По всем вопросам звоните:

+7 495 274-22-22

УДК: 616.711.6 DOI:10.33920/med-01-2006-06

Ригидная транспедикулярная фиксация в лечении пациентов с дегенеративным поясничным стенозом

Гринь А. А. Московский государственный медико-стоматологический университет имени А. И. Евдокимова; ГБУЗ «НИИ СП им. Н.В. Склифосовского» ДЗМ, Москва.
Никитин А. С. Московский государственный медико-стоматологический университет имени А. И. Евдокимова, Москва.

Представлен обзор современной литературы, посвященный вопросам жесткой транспедикулярной фиксации у больных с дегенеративным поясничным стенозом. Рассмотрены технические аспекты и различные варианты транспедикулярной фиксации, приведены сведения о сравнении их эффективности. Приведены результаты исследований, оценивающих эффективность транспедикулярной фиксации при спондилодезе, боли в поясничной области, нарушении сагиттального баланса. Освещены осложнения при транспедикулярной фиксации.

Литература:

1. Kabins M., Weinstein J. The history of vertebral screw and pedicle screw fi xation. Iowa Orthop J. 1991; 11: 127–136. PMCID: PMC2328959.

2. Krag M., Beynnon B., Pope M., Decoster T. Depth of insertion of transpedicular screws into the human vertebrae: Eff ect upon screwvertebra interface strength. J Spinal Dis. 1988; 1 (4): 287–294. DOI:10.1097/00002517-198800140-00002.

3. Wu S., Edwards W., Yuan H. Stiff ness between diff erent directions of transpedicular screws and vertebra. Clinical Bbmechanics. 1998; 13 (1): l–8. DOI: 10.1016/S0268-0033(97)00069-7.

4. Youssef J., McKinley T., Yerby S., McLain R. Characteristics of pedicle screw loading. Eff ect of sagittal insertion angle on intrapedicular bending moments. Spine (Phila Pa 1976). 1999; 24 (11): 1077–1081. DOI: 10.1097/00007632199906010-00006.

5. McKinley T., McLain R., Yerby S., Sharkey N., Sarigul-Klijn N., Smith T. Characteristics of pedicle screw loading. Eff ect of surgical technique on intravertebral and intrapedicular bending moments. Spine (Phila Pa 1976). 1999; 24 (1): 18–24. DOI: 10.1097/00007632-199901010-00005.

6. Sterba W., Kim D., Fyhrie D., Yeni Y., Vaidya R. Biomechanical Analysis of Diff ering Pedicle Screw Insertion. Clin Biomech (Bristol, Avon). 2007; 22 (4): 385–391. DOI: 10.1016/j.clinbiomech.2006.11.007.

7. Гринь А. А., Коваленко Р. А., Коновалов Н. А., Ефимов Д. В., Антонов А. В., Годков И. М. Повреждения структур забрюшинного пространства и органов брюшной полости при операциях на поясничном отделе позвоночника. Нейрохирургия. 2018; 20 (2): 35–42. https://doi.org/10.17650/1683-3295-2018-20-2-35-42.

8. Gelalis I., Paschos N., Pakos E. et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fl uoroscopy guidance and navigation techniques. Eur Spine J. 2012; 21 (2): 247–255. DOI: 10.1007/s00586-011-2011-3.

9. Parker S., Amin A., Farber S. et al. Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. J Neurosurg Spine. 2011; 15 (2): 130-135. DOI: 10.3171/2011.3.SPINE101.

10. Waschke A., Walter J., Duenisch P. et al. CT-navigation versus fl uoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J. 2013; 22 (3): 654–660. DOI: 10.1007/s00586-012-2509-3.

11. Gao S., Lv Z., Fang H. Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials. Eur Spine J. 2018; 27 (4): 921–930. DOI 10.1007/s00586-017-5333-y.

12. Levin J., Tanenbaum J., Steinmetz M., Mroz T., Overley S. Posterolateral fusion (PLF) versus transforaminal lumbar interbody fusion (TLIF) for spondylolisthesis: a systematic review and meta-analysis. Spine J. 2018; 18 (6): 1088–1098. DOI: 10.1016/j.spinee.2018.01.028.

13. de Kunder S., van Kuijk S., Rijkers K. et al. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J. 2017; 17 (11): 1712–1721. DOI: 10.1016/j.spinee.2017.06.018.

14. Liu H., Xu Y., Yang S. et al. Unilateral versus bilateral pedicle screw fi xation with posterior lumbar interbody fusion for lumbar degenerative diseases. A meta-analysis. Medicine (Baltimore). 2017 May; 96 (21): e6882. DOI: 10.1097/MD.0000000000006882.

15. Lu P., Pan T., Dai T., Chen G.., Shi K. Is unilateral pedicle screw fi xation superior than bilateral pedicle screw fi xation for lumbar degenerative diseases: a meta-analysis. Journal of Orthopaedic Surgery and Research. 2018; 13: 296. DOI: 10.1186/s13018-018-1004-x.

16. Eliades P., Rahal J. P., Herrick D. B. et al. Unilateral pedicle screw fi xation is associated with reduced cost and similar outcomes in selected patients undergoing minimally invasive transforaminal lumbar interbody fusion for L4–5 degenerative spondylolisthesis. Cureus. 2015; 7 (2): e249. DOI:10.7759/cureus.249.

17. Ferna´ndez-Fairen M., Sala P., Ramı´rez H., Gil J. A prospective randomized study of unilateral versus bilateral instrumented posterolateral lumbar fusion in degenerative spondylolisthesis, SPINE 2007; 32 (4): 395–401. DOI: 10.1097/01.brs.0000255023.56466.44.

18. Aoki Y., Yamagata M., Ikeda Y., Nakajima F. et al. A prospective randomized controlled study comparing transforaminal lumbar interbody fusion techniques for degenerative spondylolisthesis: unilateral pedicle screw and 1 cage versus bilateral pedicle screws and 2 cages Clinical article. J Neurosurg Spine 2012; 17: 153–159. DOI:10.3171/2012.5.SPINE111044.

19. Santoni B., Hynes R., McGilvray K. et al. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009: 9; 366–373. DOI:10.1016/j.spinee.2008.07.008.

20. Sakaura H., Miwa T., Yamashita T. et al. Posterior lumbar interbody fusion with cortical bone trajectory screw fixation versus posterior lumbar interbody fusion using traditional pedicle screw fixation for degenerative lumbar spondylolisthesis: a comparative study. Neurosurg Spine 2016; 25 (5): 591–595. DOI:10.3171/2016.3.SPINE151525.

21. Keorochana G., Pairuchvej S., Trathitephun W., Arirachakaran A., Predeeprompan P., Kongtharvonskul J. Comparative outcomes of cortical screw trajectory fi xation and pedicle screw fi xation in lumbar spinal fusion: systematic review and meta-analysis. World Neurosurg. 2017; 102: 340–349. DOI:10.1016/j.wneu.2017.03.010.

22. Никитин А. С., Гринь А. А. Диагностика нестабильности при дегенеративной болезни позвоночнокрестцового отдела позвоночника. Нейрохирургия. 2017; 3: 102–111.

23. Bridwell K., Sedgewick T., O’Brien M., Lenke L., Baldus C. The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis. 1993; 6 (6): 461–472. PMID: 8130395.

24. Schär R. T., Kiebach S., Raabe A., Ulrich C. T. Reoperation rate after microsurgical uni- or bilateral laminotomy for lumbar spinal stenosis with and without low-grade spondylolisthesis: What do preoperative radiographic parameters tell us? Spine (Phila Pa 1976). 2019 Feb 15; 44 (4): E245–E251. DOI: 10.1097/BRS.0000000000002798.

25. Fox M. W., Onofrio B. M., Hanssen A. D. Clinical outcomes and radiological instability following decompressive lumbar laminectomy for degenerative spinal stenosis: a comparison of patients undergoing concomitant arthrodesis versus decompression alone. J Neurosurg. 1996; 85 (5): 793–802. DOI: 10.3171 / jns.1996.85.5.0793.

26. Ghogawala Z., Dziura J., Butler W. et al. Laminectomy plus fusion versus laminectomy alone for lumbar dpondylolisthesis. N Engl J Med. 2016; 374: 1424–1434. DOI: 10.1056/NEJMoa1508788.

27. Scholler K., Alimi M., Cong G-T., Christos P., Hartl R. Lumbar spinal stenosis associated with degenerative lumbar spondylolisthesis: a systematic review and meta-analysis of secondary fusion rates following open vs minimally invasive decompression. Neurosurgery. 2017; 80 (3): 355–367. DOI:10.1093/neuros/nyw091.

28. Гринь А. А., Никитин А. С., Каландари А. А., Асратян С. А., Юсупов С-Э. Р. Интерламинарная декомпрессия в лечении пациентов с дегенеративным люмбальным стенозом. Нейрохирургия 2019; 4.

29. Sugiura T., Okuda S., Matsumoto T. et al. Surgical outcomes and limitations of decompression surgery for degenerative spondylolisthesis. Global Spine Journal. 2018; 8 (7): 733–738. DOI: 10.1177/2192568218770793.

30. Blumenthal C., Curran J., Benzel E., Potter R., Magge S., Harrington J., Coumans J., Ghogawala Z. Radiographic predictors of delayed instability following decompression without fusion for degenerative grade I lumbar spondylolisthesis. J Neurosurg Spine. 2013; 18 (4): 340–346. DOI: 10.3171/2013.1.SPINE12537.

31. Inose H., Kato T., Yuasa M. et al. Comparison of decompression, decompression plus fusion, and decompression plus stabilization for degenerative spondylolisthesis. A prospective, randomized study. Clin Spine Surg 2018; 31 (7): E347–352. DOI: 10.1097/BSD.0000000000000659.

32. Chang H., Fujisawa N., Tsuchiya T., Oya S., Matsui T. Degenerative spondylolisthesis does not aff ect the outcome of unilateral laminotomy with bilateral decompression in patients with lumbar stenosis. Spine 2014; 39 (5): 400–408. DOI:10.1097/BRS.0000000000000161.

33. Sasai K., Umeda M., Maruyama T., Wakabayashi E., Iida H. Microsurgical bilateral decompression via a unilateral approach for lumbar spinal canal stenosis including degenerative spondylolisthesis. J Neurosurg Spine. 2008; 9 (6): 554–559. DOI:10.3171/SPI.2008.8.08122.

34. Kemal M., Golen M., Ilik F., Coven I., Dal Y. Clinical outcomes of patients over 75 years of age with degenerative spondylolisthesis following bilateral decompression via unilateral approach. Turk Neurosurg. 2017; 27 (5): 785–789. DOI: 10.5137/1019-5149.JTN.18990-16.0.

35. Försth P., Michaëlsson K., Sandén B. Does fusion improve the outcome after decompressive surgery for lumbar spinal stenosis?: A two-year follow-up study involving 5390 patients Bone Joint J. 2013; 95-B: 960–965. DOI:10.1302/0301-620X.95B7.30776.

36. Wang M., Luo X., Ye Y., Zhang Z. Does concomitant degenerative spondylolisthesis infl uence the outcome of decompression alone in degenerative lumbar spinal stenosis? A meta-analysis of comparative studies. World Neurosurg. 2019; 123: 226–238. DOI: 10.1016/j.wneu.2018.11.246.

37. Ramhmdani S., Xia Y., Xu R. et al. Iatrogenic spondylolisthesis following open lumbar laminectomy : case series and review of the literature. World Neurosurg. 2018 May; 113: e383–e390. DOI: 10.1016/j.wneu.2018.02.039.

38. Guha D., Heary R., Shamji M. Iatrogenic spondylolisthesis following laminectomy for degenerative lumbar stenosis: systematic review and current concepts. Neurosurg Focus. 2015; 39 (4): E9. DOI:10.3171/2015.7.FOCUS15259.

39. Ikegami D., Hosono N., Mukai Y., Tateishi K., Fuji T. Preoperative retrolisthesis as a predictive risk factor of reoperation due to delayed onset symptomatic foraminal stenosis after central decompression for lumbar canal stenosis without fusion. The Spine Journal. 2017; 17 (8): 1066–1073.

40. Strube P., Putzier M., Siewe J., Eicker S., Dreimann M., Zippelius T. To fuse or not to fuse: a survey among members of the German Spine Society (DWG) regarding lumbar degenerative spondylolisthesis and spinal stenosis. Arch Orthop Trauma Surg. 2019; 139 (5): 613–621. DOI:10.1007/s00402-018-3096-5.

41. Crawford С. H., Glassman S. D., Mummaneni P. V. et al. Back pain improvement after decompression without fusion or stabilization in patients with lumbar spinal stenosis and clinically signifi cant preoperative back pain. J Neurosurg Spine 2016; 25:596–601. DOI: 10.3171/2016.3.SPINE151468.

42. Oba H., Takahashi J., Tsutsumimoto T., Ikegami S. et al. Predictors of improvement in low back pain after lumbar decompression surgery: Prospective study of 140 patients. J Orthop Sci. 2017; 22 (4): 641–646. DOI: 10.1016/j.jos.2017.03.011.

43. Srinivas S., Paquet J., Bailey C. et al. Eff ect of spinal decompression on back pain in lumbar spinal stenosis: A Canadian Spine Outcomes Research Network (CSORN) study. Spine J. 2019; 19 (6): 1001–1008. DOI: 10.1016/j. spinee.2019.01.003.

44. Sigmundsson F., Jönsson B., Strömqvist B. Outcome of decompression with and without fusion in spinal stenosis with degenerative spondylolisthesis in relation to preoperative pain pattern: a register study of 1,624 patients. Spine J. 2015; 15 (4): 638–646. DOI: 10.1016/j.spinee.2014.11.020.

45. Ghandhari H., Ameri E., Vahidtari H. et al. The association between intermittent neurogenic claudication and spinal sagittal balance in patients with lumbar canal stenosis: a prospective study. Shafa Ortho J. 2014; 1 (1): e48.

46. Madkouri R., Brauge D., Vidon-Buthion A., Fahed E., Mourier K., Beaurain J., Grelat M. Improvement in sagittal balance after decompression surgery without fusion in patients with degenerative lumbar stenosis: clinical and radiographic results at 1 year. World Neurosurg. 2018; 114: e417–e424. DOI: 10.1016/j.wneu.2018.03.002.

47. Hikata T., Watanabe K., Fujita N., Iwanami A., Hosogane N., Ishii K. et al. Impact of sagittal spinopelvic alignment on clinical outcomes after decompression surgery for lumbar spinal canal stenosis without coronal imbalance. J Neurosurg Spine. 2015; 23: 451–458. DOI:10.3171/2015.1.SPINE14642.

48. Fujii K., Kawamura N., Ikegami M., Niitsuma G., Kunogi J. Radiological improvements in global sagittal alignment after lumbar decompression without fusion. Spine. 2015; 40: 703–709. DOI:10.1097/BRS.0000000000000708.

49. Shin E., Kim C., Chung C., Choi Y. et al. Sagittal imbalance in patients with lumbar spinal stenosis and outcomes after simple decompression surgery. Spine J. 2017; 17 (2): 175–182. DOI: 10.1016/j.spinee.2016.08.023.

50. Hikata T., Watanabe K., Fujita N. et al. Impact of sagittal spinopelvic alignment on clinical outcomes after decompression surgery for lumbar spinal canal stenosis without coronal imbalance. J Neurosurg Spine. 2015; 23 (4): 451–458. DOI: 10.3171/2015.1.SPINE14642.

51. Schwab F., Lafage V., Patel A., Farcy J. P. Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976). 2009; 34 (17): 1828–1833. DOI: 10.1097/BRS.0b013e3181a13c08. PMID: 19644334.

52. Никитин А. С., Гринь А. А. Сочетание дегенеративного стеноза позвоночного канала с деформацией позвоночника на поясничном уровне. Обзор литературы. Нейрохирургия 2018; 20 (3): 91–103. DOI:10.17650/16833295-2018-20-3-91-103.

53. Oda I., Abumi K., Yu B., Sudo H., Minami A. Types of spinal instability that require interbody support in posterior lumbar reconstruction: an in vitro biomechanical investigation. Spine (Phila Pa 1976). 2003; 28 (14): 1573–1580. PMID:12865847.

54. Levin J., Tanenbaum J., Steinmetz M., Mroz T., Overley S. Posterolateral fusion (PLF) versus transforaminal l umbar interbody fusion (TLIF) for spondylolisthesis: a systematic review and meta-analysis. Spine J. 2018; 18 (6): 1088–1098. DOI: 10.1016/j.spinee.2018.01.028.

55. Farrokhi M., Yadollahikhales G., Gholami M., Mousavi S., Mesbahi A., Asadi-Pooya A. Clinical outcomes of posterolateral fusion versus posterior lumbar interbody fusion in patients with lumbar spinal stenosis and degenerative instability. Pain Physician 2018; 21: 383–406. PMID: 30045595.

56. Dick J., Jones M., Zdeblick T., Kunz D., Horton W. A biomechanical comparison evaluating the use of intermediate screws and cross-linkage in lumbar pedicle fi xation. J Spinal Disord. 1994; 7 (5): 402–407. PMID:7819640.

57. Brodke D., Bachus K., Mohr A., Nguyen B. Segmental pedicle screw fi xation or cross-links in multilevel lumbar constructs: a biomechanical analysis. The Spine Journal 2001; 1 (5): 373–379. DOI: 10.1016/s1529-9430(01)00116-4.

58. Nakajima Y., Hara M., Umebayashi D. et al. Biomechanical analysis of a pedicle screw-rod system with a novel cross-link confi guration. Asian Spine J. 2016; 10 (6): 993–999. DOI: 10.4184/asj.2016.10.6.993.

59. Gautschi O., Schatlo B., Schaller K., Tessitore E. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus. 2011; 31 (4): E8. DOI:10.3171/2011.7.FOCUS11168.

60. Chaudhary S., Vives M., Basra S., Reiter M. J Spinal Cord Med. 2007; 30 (5): 441–451. Postoperative spinal wound infections and postprocedural diskitis.

61. Chahoud J., Kanafani Z., Kanj S. Surgical site infections following spine surgery: eliminating the controversies in the diagnosis. Front Med (Lausanne). 2014; 1: 7. DOI: 10.3389/fmed.2014.00007.

62. Jutte P., Castelein R. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations. Eur Spine J. 2002; 11 (6): 594–598. DOI:10.1007/s00586-002-0469-8.

63. Никитин А. С. Синдром оперированного позвоночника. Журнал неврологии и психиатрии им. С. С. Корсакова. 2016; 116 (5): 112–118. DOI:10.17116/jnevro201611651112-118.

64. Gillet P. The fate of the adjacent motion segments after lumbar fusion. J. Spinal. Disord. Tech. 2003; 16 (4): 338–345. DOI:10.1097/00024720-200308000-00005.

65. Никитин А. С., Асратян С. А., Новиков А. Е. Cиндром поражения смежного уровня поясничного отдела позвоночника после спондилодеза. Вестник Ивановской медицинской академии. 2015; 20 (2): 66–70.

66. Tokuhashi Y., Ajiro Y., Umezawa N. Follow-up of patients with delayed union after posterior fusion with pedicle screw fi xation. Spine (Phila Pa 1976). 2008; 33 (7): 786–791.

67. Kanemura T., Matsumoto A., Ishikawa Y. Radiographic changes in patients with pseudarthrosis after posterior lumbar interbody arthrodesis using carbon interbody cages. A Prospective Five-Year Study. J Bone Joint Surg Am. 2014; 96: e82 (1–9).

68. Risso-Neto M., Neto S., Rossanez R. et al. Correlation between quality of life and osteolysis around lumbar pedicle screws. Coluna/Columna. 2016; 15 (4): 290—294. DOI:10.1590/S1808-185120161504147749.

69. Goldenberg Y., Tee J., Salinas-La Rosa C., Murphy M. Spinal metallosis: a systematic review. Eur Spine J. 2016; 25 (5): 1467–1473. DOI:10.1007/s00586-015-4347-6.

1. Kabins M., Weinstein J. The history of vertebral screw and pedicle screw fi xation. Iowa Orthop J. 1991; 11: 127–136. PMCID: PMC2328959.

2. Krag M., Beynnon B., Pope M., Decoster T. Depth of insertion of transpedicular screws into the human vertebrae: Eff ect upon screwvertebra interface strength. J Spinal Dis. 1988; 1 (4): 287–294. DOI:10.1097/00002517198800140-00002.

3. Wu S., Edwards W., Yuan H. Stiff ness between diff erent directions of transpedicular screws and vertebra. Clinical Bbmechanics. 1998; 13 (1): l–8. DOI: 10.1016/S0268-0033(97)00069-7.

4. Youssef J., McKinley T., Yerby S., McLain R. Characteristics of pedicle screw loading. Eff ect of sagittal insertion angle on intrapedicular bending moments. Spine (Phila Pa 1976). 1999; 24 (11): 1077–1081. DOI: 10.1097/00007632-199906010-00006.

5. McKinley T., McLain R., Yerby S., Sharkey N., Sarigul-Klijn N., Smith T. Characteristics of pedicle screw loading. Eff ect of surgical technique on intravertebral and intrapedicular bending moments. Spine (Phila Pa 1976). 1999; 24 (1): 18–24. DOI: 10.1097/00007632-199901010-00005.

6. Sterba W., Kim D., Fyhrie D., Yeni Y., Vaidya R. Biomechanical Analysis of Diff ering Pedicle Screw Insertion. Clin Biomech (Bristol, Avon). 2007; 22 (4): 385–391. DOI: 10.1016/j.clinbiomech.2006.11.007.

7. Grin A. A., Kovalenko R. A., Konovalov N. A., Efi mov D. V., Antonov A. V., Godkov I. M. Damage to the structures of the retroperitoneal space and abdominal organs during operations on the lumbar spine. Neurosurgery. 2018; 20 (2): 35–42. https://doi.org/10.17650/1683-3295-2018-20-2-35-42.

8. Gelalis I., Paschos N., Pakos E. et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fl uoroscopy guidance and navigation techniques. Eur Spine J. 2012; 21 (2): 247–255. DOI: 10.1007/s00586-011-2011-3.

9. Parker S., Amin A., Farber S. et al. Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. J Neurosurg Spine. 2011; 15 (2): 130-135. DOI: 10.3171/2011.3.SPINE101.

10. Waschke A., Walter J., Duenisch P. et al. CT-navigation versus fl uoroscopy-guided placement of pedicle screws at the thoracolumbar spine: single center experience of 4,500 screws. Eur Spine J. 2013; 22 (3): 654–660. DOI: 10.1007/s00586-012-2509-3.

11. Gao S., Lv Z., Fang H. Robot-assisted and conventional freehand pedicle screw placement: a systematic review and meta-analysis of randomized controlled trials. Eur Spine J. 2018; 27 (4): 921–930. DOI 10.1007/s00586-017-5333-y.

12. Levin J., Tanenbaum J., Steinmetz M., Mroz T., Overley S. Posterolateral fusion (PLF) versus transforaminal lumbar interbody fusion (TLIF) for spondylolisthesis: a systematic review and meta-analysis. Spine J. 2018; 18 (6): 1088–1098. DOI: 10.1016/j.spinee.2018.01.028.

13. de Kunder S., van Kuijk S., Rijkers K. et al. Transforaminal lumbar interbody fusion (TLIF) versus posterior lumbar interbody fusion (PLIF) in lumbar spondylolisthesis: a systematic review and meta-analysis. Spine J. 2017; 17 (11): 1712–1721. DOI: 10.1016/j.spinee.2017.06.018.

14. Liu H., Xu Y., Yang S. et al. Unilateral versus bilateral pedicle screw fi xation with posterior lumbar interbody fusion for lumbar degenerative diseases. A meta-analysis. Medicine (Baltimore). 2017 May; 96 (21): e6882. DOI: 10.1097/MD.0000000000006882.

15. Lu P., Pan T., Dai T., Chen G.., Shi K. Is unilateral pedicle screw fi xation superior than bilateral pedicle screw fi xation for lumbar degenerative diseases: a meta-analysis. Journal of Orthopaedic Surgery and Research. 2018; 13:

296. DOI: 10.1186/s13018-018-1004-x.

16. Eliades P., Rahal J. P., Herrick D. B. et al. Unilateral pedicle screw fi xation is associated with reduced cost and similar outcomes in selected patients undergoing minimally invasive transforaminal lumbar interbody fusion for L4–5 degenerative spondylolisthesis. Cureus. 2015; 7 (2): e249. DOI:10.7759/cureus.249.

17. Ferna´ndez-Fairen M., Sala P., Ramı´rez H., Gil J. A prospective randomized study of unilateral versus bilateral instrumented posterolateral lumbar fusion in degenerative spondylolisthesis, SPINE 2007; 32 (4): 395–401. DOI: 10.1097/01.brs.0000255023.56466.44.

18. Aoki Y., Yamagata M., Ikeda Y., Nakajima F. et al. A prospective randomized controlled study comparing transforaminal lumbar interbody fusion techniques for degenerative spondylolisthesis: unilateral pedicle screw and 1 cage versus bilateral pedicle screws and 2 cages Clinical article. J Neurosurg Spine 2012; 17: 153–159. DOI:10.3171/2012.5.SPINE111044.

19. Santoni B., Hynes R., McGilvray K. et al. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009: 9; 366–373. DOI:10.1016/j.spinee.2008.07.008.

20. Sakaura H., Miwa T., Yamashita T. et al. Posterior lumbar interbody fusion with cortical bone trajectory screw fi xation versus posterior lumbar interbody fusion using traditional pedicle screw fi xation for degenerative lumbar spondylolisthesis: a comparative study. Neurosurg Spine 2016; 25 (5): 591–595. DOI:10.3171/2016.3.SPINE151525.

21. Keorochana G., Pairuchvej S., Trathitephun W., Arirachakaran A., Predeeprompan P., Kongtharvonskul J. Comparative outcomes of cortical screw trajectory fi xation and pedicle screw fi xation in lumbar spinal fusion: systematic review and meta-analysis. World Neurosurg. 2017; 102: 340–349. DOI:10.1016/j.wneu.2017.03.010.

22. Nikitin A. S., Grin A. A. Diagnosis of instability in degenerative disease of the spinal-sacral spine. Neurosurgery. 2017; (3): 102-111.

23. Bridwell K., Sedgewick T., O’Brien M., Lenke L., Baldus C. The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis. 1993; 6 (6): 461–472. PMID: 8130395.

24. Schär R. T., Kiebach S., Raabe A., Ulrich C. T. Reoperation rate after microsurgical uni- or bilateral laminotomy for lumbar spinal stenosis with and without low-grade spondylolisthesis: What do preoperative radiographic parameters tell us? Spine (Phila Pa 1976). 2019 Feb 15; 44 (4): E245–E251. DOI: 10.1097/BRS.0000000000002798.

25. Fox M. W., Onofrio B. M., Hanssen A. D. Clinical outcomes and radiological instability following decompressive lumbar laminectomy for degenerative spinal stenosis: a comparison of patients undergoing concomitant arthrodesis versus decompression alone. J Neurosurg. 1996; 85 (5): 793–802. DOI: 10.3171 / jns.1996.85.5.0793.

26. Ghogawala Z., Dziura J., Butler W. et al. Laminectomy plus fusion versus laminectomy alone for lumbar dpondylolisthesis. N Engl J Med. 2016; 374: 1424–1434. DOI: 10.1056/NEJMoa1508788.

27. Scholler K., Alimi M., Cong G-T., Christos P., Hartl R. Lumbar spinal stenosis associated with degenerative lumbar spondylolisthesis: a systematic review and meta-analysis of secondary fusion rates following open vs minimally invasive decompression. Neurosurgery. 2017; 80 (3): 355–367. DOI:10.1093/neuros/nyw091.

28. Grin A. A., Nikitin A. S., Kalandari A. A., Asratyan S. A., Yusupov S.-E.R. Interlaminar decompression in the treatment of patients with degenerative lumbar stenosis. Neurosurgery 2019; 4.

29. Sugiura T., Okuda S., Matsumoto T. et al. Surgical outcomes and limitations of decompression surgery for degenerative spondylolisthesis. Global Spine Journal. 2018; 8 (7): 733–738. DOI: 10.1177/2192568218770793.

30. Blumenthal C., Curran J., Benzel E., Potter R., Magge S., Harrington J., Coumans J., Ghogawala Z. Radiographic predictors of delayed instability following decompression without fusion for degenerative grade I lumbar spondylolisthesis. J Neurosurg Spine. 2013; 18 (4): 340–346. DOI: 10.3171/2013.1.SPINE12537.

31. Inose H., Kato T., Yuasa M. et al. Comparison of decompression, decompression plus fusion, and decompression plus stabilization for degenerative spondylolisthesis. A prospective, randomized study. Clin Spine Surg 2018; 31 (7): E347–352. DOI: 10.1097/BSD.0000000000000659.

32. Chang H., Fujisawa N., Tsuchiya T., Oya S., Matsui T. Degenerative spondylolisthesis does not aff ect the outcome of unilateral laminotomy with bilateral decompression in patients with lumbar stenosis. Spine 2014; 39 (5): 400–408. DOI:10.1097/BRS.0000000000000161.

33. Sasai K., Umeda M., Maruyama T., Wakabayashi E., Iida H. Microsurgical bilateral decompression via a unilateral approach for lumbar spinal canal stenosis including degenerative spondylolisthesis. J Neurosurg Spine. 2008; 9 (6): 554–559. DOI:10.3171/SPI.2008.8.08122.

34. Kemal M., Golen M., Ilik F., Coven I., Dal Y. Clinical outcomes of patients over 75 years of age with degenerative spondylolisthesis following bilateral decompression via unilateral approach. Turk Neurosurg. 2017; 27 (5): 785–789. DOI: 10.5137/1019-5149.JTN.18990-16.0.

35. Försth P., Michaëlsson K., Sandén B. Does fusion improve the outcome after decompressive surgery for lumbar spinal stenosis?: A two-year follow-up study involving 5390 patients Bone Joint J. 2013; 95-B: 960–965. DOI:10.1302/0301-620X.95B7.30776.

36. Wang M., Luo X., Ye Y., Zhang Z. Does concomitant degenerative spondylolisthesis infl uence the outcome of decompression alone in degenerative lumbar spinal stenosis? A meta-analysis of comparative studies. World Neurosurg. 2019; 123: 226–238. DOI: 10.1016/j.wneu.2018.11.246.

37. Ramhmdani S., Xia Y., Xu R. et al. Iatrogenic spondylolisthesis following open lumbar laminectomy : case series and review of the literature. World Neurosurg. 2018 May; 113: e383–e390. DOI: 10.1016/j.wneu.2018.02.039.

38. Guha D., Heary R., Shamji M. Iatrogenic spondylolisthesis following laminectomy for degenerative lumbar stenosis: systematic review and current concepts. Neurosurg Focus. 2015; 39 (4): E9. DOI:10.3171/2015.7.FOCUS15259.

39. Ikegami D., Hosono N., Mukai Y., Tateishi K., Fuji T. Preoperative retrolisthesis as a predictive risk factor of reoperation due to delayed onset symptomatic foraminal stenosis after central decompression for lumbar canal stenosis without fusion. The Spine Journal. 2017; 17 (8): 1066–1073.

40. Strube P., Putzier M., Siewe J., Eicker S., Dreimann M., Zippelius T. To fuse or not to fuse: a survey among members of the German Spine Society (DWG) regarding lumbar degenerative spondylolisthesis and spinal stenosis. Arch Orthop Trauma Surg. 2019; 139 (5): 613–621. DOI:10.1007/s00402-018-3096-5.

41. Crawford С. H., Glassman S. D., Mummaneni P. V. et al. Back pain improvement after decompression without fusion or stabilization in patients with lumbar spinal stenosis and clinically signifi cant preoperative back pain. J Neurosurg Spine 2016; 25:596–601. DOI: 10.3171/2016.3.SPINE151468.

42. Oba H., Takahashi J., Tsutsumimoto T., Ikegami S. et al. Predictors of improvement in low back pain after lumbar decompression surgery: Prospective study of 140 patients. J Orthop Sci. 2017; 22 (4): 641–646. DOI: 10.1016/j.jos.2017.03.011.

43. Srinivas S., Paquet J., Bailey C. et al. Eff ect of spinal decompression on back pain in lumbar spinal stenosis: A Canadian Spine Outcomes Research Network (CSORN) study. Spine J. 2019; 19 (6): 1001–1008. DOI: 10.1016/j.spinee.2019.01.003.

44. Sigmundsson F., Jönsson B., Strömqvist B. Outcome of decompression with and without fusion in spinal stenosis with degenerative spondylolisthesis in relation to preoperative pain pattern: a register study of 1,624 patients. Spine J. 2015; 15 (4): 638–646. DOI: 10.1016/j.spinee.2014.11.020.

45. Ghandhari H., Ameri E., Vahidtari H. et al. The association between intermittent neurogenic claudication and spinal sagittal balance in patients with lumbar canal stenosis: a prospective study. Shafa Ortho J. 2014; 1 (1): e48.

46. Madkouri R., Brauge D., Vidon-Buthion A., Fahed E., Mourier K., Beaurain J., Grelat M. Improvement in sagittal balance after decompression surgery without fusion in patients with degenerative lumbar stenosis: clinical and radiographic results at 1 year. World Neurosurg. 2018; 114: e417–e424. DOI: 10.1016/j.wneu.2018.03.002.

47. Hikata T., Watanabe K., Fujita N., Iwanami A., Hosogane N., Ishii K. et al. Impact of sagittal spinopelvic alignment on clinical outcomes after decompression surgery for lumbar spinal canal stenosis without coronal imbalance. J Neurosurg Spine. 2015; 23: 451–458. DOI:10.3171/2015.1.SPINE14642.

48. Fujii K., Kawamura N., Ikegami M., Niitsuma G., Kunogi J. Radiological improvements in global sagittal alignment after lumbar decompression without fusion. Spine. 2015; 40: 703–709. DOI:10.1097/BRS.0000000000000708.

49. Shin E., Kim C., Chung C., Choi Y. et al. Sagittal imbalance in patients with lumbar spinal stenosis and outcomes after simple decompression surgery. Spine J. 2017; 17 (2): 175–182. DOI: 10.1016/j.spinee.2016.08.023.

50. Hikata T., Watanabe K., Fujita N. et al. Impact of sagittal spinopelvic alignment on clinical outcomes after decompression surgery for lumbar spinal canal stenosis without coronal imbalance. J Neurosurg Spine. 2015; 23 (4): 451–458. DOI: 10.3171/2015.1.SPINE14642.

51. Schwab F., Lafage V., Patel A., Farcy J. P. Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila Pa 1976). 2009; 34 (17): 1828–1833. DOI: 10.1097/BRS.0b013e3181a13c08. PMID: 19644334.

52. Nikitin A. S., Grin A. A. Combination of degenerative stenosis of the spinal canal with spinal deformity at the lumbar level. Literature review. Neurosurgery 2018; 20 (3): 91-103. DOI: 10.17650 / 1683-3295-2018-20-3-91-103.

53. Oda I., Abumi K., Yu B., Sudo H., Minami A. Types of spinal instability that require interbody support in posterior lumbar reconstruction: an in vitro biomechanical investigation. Spine (Phila Pa 1976). 2003; 28 (14): 1573–1580. PMID:12865847.

54. Levin J., Tanenbaum J., Steinmetz M., Mroz T., Overley S. Posterolateral fusion (PLF) versus transforaminal lumbar interbody fusion (TLIF) for spondylolisthesis: a systematic review and meta-analysis. Spine J. 2018; 18 (6): 1088– 1098. DOI: 10.1016/j.spinee.2018.01.028.

55. Farrokhi M., Yadollahikhales G., Gholami M., Mousavi S., Mesbahi A., Asadi-Pooya A. Clinical outcomes of posterolateral fusion versus posterior lumbar interbody fusion in patients with lumbar spinal stenosis and degenerative instability. Pain Physician 2018; 21: 383–406. PMID: 30045595.

56. Dick J., Jones M., Zdeblick T., Kunz D., Horton W. A biomechanical comparison evaluating the use of intermediate screws and cross-linkage in lumbar pedicle fi xation. J Spinal Disord. 1994; 7 (5): 402–407. PMID:7819640.

57. Brodke D., Bachus K., Mohr A., Nguyen B. Segmental pedicle screw fi xation or cross-links in multilevel lumbar constructs: a biomechanical analysis. The Spine Journal 2001; 1 (5): 373–379. DOI: 10.1016/s1529-9430(01)00116-4.

58. Nakajima Y., Hara M., Umebayashi D. et al. Biomechanical analysis of a pedicle screw-rod system with a novel cross-link confi guration. Asian Spine J. 2016; 10 (6): 993–999. DOI: 10.4184/asj.2016.10.6.993.

59. Gautschi O., Schatlo B., Schaller K., Tessitore E. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus. 2011; 31 (4): E8. DOI:10.3171/2011.7.FOCUS11168.

60. Chaudhary S., Vives M., Basra S., Reiter M. J Spinal Cord Med. 2007; 30 (5): 441–451. Postoperative spinal wound infections and postprocedural diskitis.

61. Chahoud J., Kanafani Z., Kanj S. Surgical site infections following spine surgery: eliminating the controversies in the diagnosis. Front Med (Lausanne). 2014; 1: 7. DOI: 10.3389/fmed.2014.00007.

62. Jutte P., Castelein R. Complications of pedicle screws in lumbar and lumbosacral fusions in 105 consecutive primary operations. Eur Spine J. 2002; 11 (6): 594–598. DOI:10.1007/s00586-002-0469-8.

63. Nikitin A. S. Syndrome of the operated spine. Journal of Neurology and Psychiatry named after S. S. Korsakova. 2016; 116 (5): 112-118.

64. Gillet P. The fate of the adjacent motion segments after lumbar fusion. J. Spinal. Disord. Tech. 2003; 16 (4): 338–345. DOI:10.1097/00024720-200308000-00005.

65. Nikitin A. S., Asratyan S. A., Novikov A. E. Syndrome of lesion of an adjacent level of the lumbar spine after spinal fusion. Bulletin of the Ivanovo Medical Academy 2015; 20 (2): 66–70.

66. Tokuhashi Y., Ajiro Y., Umezawa N. Follow-up of patients with delayed union after posterior fusion with pedicle screw fi xation. Spine (Phila Pa 1976). 2008; 33 (7): 786–791.

67. Kanemura T., Matsumoto A., Ishikawa Y. Radiographic changes in patients with pseudarthrosis after posterior lumbar interbody arthrodesis using carbon interbody cages. A Prospective Five-Year Study. J Bone Joint Surg Am. 2014; 96: e82 (1–9).

68. Risso-Neto M., Neto S., Rossanez R. et al. Correlation between quality of life and osteolysis around lumbar pedicle screws. Coluna/Columna. 2016; 15 (4): 290—294. DOI:10.1590/S1808-185120161504147749.

69. Goldenberg Y., Tee J., Salinas-La Rosa C., Murphy M. Spinal metallosis: a systematic review. Eur Spine J. 2016; 25 (5): 1467–1473. DOI:10.1007/s00586-015-4347-6.

Поясничный дегенеративный стеноз — это сужение позвоночного канала на поясничном уровне вследствие дегенеративных и гипертрофических изменений элементов, образующих стенки позвоночного канала. Сужение канала приводит к компрессии корешков спинного мозга.

При отсутствии постоянного неврологического дефицита, наличии в клинической картине только болевого синдрома первым этапом пациенту проводят консервативное лечение. В случае его неэффективности пациенту предлагают хирургическую декомпрессию зоны стеноза. Она может быть как изолированной, так и в сочетании со стабилизацией фиксирующими системами. Стабилизация может быть динамической или жесткой (ригидной). До настоящего времени наиболее распространенной остается жесткая транспедикулярная фиксация. Целью данной работы является обзор наиболее крупных исследований, оценивающих эффективность жесткой транспедикулярной фиксации у больных с дегенеративным стенозом.

Транспедикулярная фиксация предполагает введение винта через ножку в тело позвонка. Прототипом современной транспедикулярной фиксации является система, описанная Рой-Камиллом в 1970 г [1]. По авторской методике, с целью фиксации в тело позвонка транспедикулярно вводили винты, головки которых фиксировали пластину к позвонками. По мере модернизации конструкции пластины были заменены на балки, была оптимизирована форма и конструкция винтов. В классическом понимании современная транспедикулярная фиксация одного позвоночного сегмента представляет собой систему из четырех винтов, вкрученных в тела позвонков через их ножки (рис. 1).

Головки винтов имеют гнездо с резьбой для установки продольной штанги и фиксации ее гайкой. Большинство транспедикулярных винтов в настоящее время являются полиаксиальными (головка вращается во всех плоскостях и фиксируется в определенном положении только при закручивании гайки). Для установления оптимального положения транспедикулярных винтов в позвонке было проведено несколько биомеханических исследований.

Krag M. и соавт. еще в 1988 г. показали, что надежность стояния транспедикулярных винтов зависит от глубины расположения винта [2]. На блок-препаратах авторы делали флексионную и торсионную нагрузку на винты. Сравнивали прочностные характеристики конструкции в зависимости от различной длины винта: до половины тела позвонка, до 80 % длины позвонка и до 100 % длины позвонка (до переднего кортикального слоя) (рис. 2). Авторы выявили, что при глубине винта до 80 % длины тела позвонка устойчивость к нагрузке выше на 25 %, чем при глубине винта до половины тела позвонка. Увеличение глубины расположения винта до 100 % длины позвонка увеличивает устойчивость к нагрузке еще на 25 %.

Для Цитирования:
Гринь А. А., Никитин А. С., Ригидная транспедикулярная фиксация в лечении пациентов с дегенеративным поясничным стенозом. Вестник неврологии, психиатрии и нейрохирургии. 2020;6.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: