По всем вопросам звоните:

+7 495 274-22-22

УДК: 617–089 DOI:10.33920/med-15-2306-09

Перспективы лазерной аблации доброкачественных узлов щитовидной железы. Обзор литературы

Шалаева Татьяна Ильинична д-р мед. наук, профессор кафедры общей хирургии, ФГАОУ ВО «РНИМУ имени Н.И. Пирогова» (117997, г. Москва, ул. Островитянова, д. 1), врач-хирург, ГБУЗ «Городская клиническая больница № 24 Департамента здравоохранения города Москвы» (127015, г. Москва, ул. Писцовая, д. 10), е-mail: Ta.i.shalaeva@gmail.cоm, https://orcid.org/0000‑0003‑4753‑4766
Свириденко Надежда Владимировна канд. мед. наук, доцент кафедры общей хирургии, ФГАОУ ВО «РНИМУ имени Н.И. Пирогова» (117997, г. Москва, ул. Островитянова, д. 1), врач-хирург, ГБУЗ «Городская клиническая больница № 24 Департамента здравоохранения города Москвы» (127015, г. Москва, ул. Писцовая, д. 10), е-mail: sviridenko-na@yandex.ru, https://orcid.org/0000‑0002‑6306‑8155
Устаалиева Патимат Багандовна старший лаборант кафедры общей хирургии, ФГАОУ ВО «РНИМУ имени Н.И. Пирогова» (117997, г. Москва, ул. Островитянова, д. 1), врач-хирург, ГБУЗ «Городская клиническая больница № 24 Департамента здравоохранения города Москвы» (127015, г. Москва, ул. Писцовая, д. 10), ORCID iD 0009‑0001‑2644‑924X

Статья является обзором литературы, посвященной применению лазерной термической аблации (ЛТА) для деструкции доброкачественных узловых образований щитовидной железы. По разным данным, до 60 % обработанных узлов не реагируют на этот вид лечения, и единое мнение о причинах неудач ЛТА у исследователей отсутствует. При выполнении ЛТА используют разные длины волн и мощность излучения, различаются количество и длительность сеансов и количество энергии, доставленной в узел, всё это вносит вклад в большую вариабельность ответа на лечение, затрудняет сравнение данных, окончательную оценку эффективности и в определенной степени— безопасности метода. Относительно влияния на успех лечения морфологических особенностей, размера и положения узла в щитовидной железе в литературе также представлены противоречивые результаты. Высокая вариабельность результатов лечения заставляет некоторых авторов считать, что эффект лазерной аблации узлов ЩЖ непредсказуем. Следует также отметить, что чаще всего в исследованиях оценивается уменьшение размеров узлов, которое само по себе имеет сомнительную клиническую значимость, а данные об успешности устранения функциональной автономии неоднозначны. Таким образом, несмотря на почти четверть века применения ЛТА для лечения узлового зоба и большое количество опубликованных исследований, ни один из принципиальных вопросов, касающихся оптимальных схем проведения и повышения эффективности процедур, в том числе у пациентов с функциональной автономией и крупными узловыми образованиями, не получил окончательного ответа.

Литература:

1. Александров Ю.К., Салтыкова В.Г., Патрунов Ю.Н. Отбор пациентов для малоинвазивных вмешательств на узлах щитовидной железы. Таврический медико-биологический вестник. 2020; 23 (2): 187–194. [Aleksandrov YU.K., Saltykova V.G., Patrunov YU.N. The selection of patients for minimally invasive procedures on the thiroid nodules. Tavricheskiy Mediko-Biologicheskiy Vestnik. 2020; 23 (2): 187–194. (in Russian)]

2. Слепцов И.В. Методы малоинвазивного лечения заболеваний щитовидной и околощитовидных желез: автореферат дис… д-ра мед. наук: 14.01.17. СПб., 2012; 46 с.

3. Achille G, Zizzi S, Di Stasio E, et al. Ultrasound‐guided percutaneous laser ablation in treating symptomatic solid benign thyroid nodules: Our experience in 45 patients. Head and Neck 2016; 38: 677–682.

4. Bernardi S, Giudici F, Cesareo R, et al. Five-year results of radiofrequency and laser ablation of benign thyroid nodules: a multicenter study from the Italian minimally invasive treatments of the thyroid group. Thyroid. Published online Month xx, 21xx. doi: 10.1089/thy.2020.0202.

5. Cesareo R, Palermo A, Pasqualini V, et al. Radiofrequency ablation for the management of thyroid nodules: a critical appraisal of the literature. Clin Endocrinol (Oxf). 2017; 87 (6): 639–648.

6. Cesareo R, Naciu AM, Iozzino M, et al. Nodule size as predictive factor of efficacy of radiofrequency ablation in treating autonomously functioning thyroid nodules. Int J Hyperthermia. 2018; 34 (5): 617–623.

7. Cesareo R, Palermo A, Benvenuto D, et al. Efficacy of radiofrequency ablation in autonomous functioning thyroid nodules. A systematic review and meta-analysis. Rev Endocr Metab Disord. 2019; 20 (1): 37–44.

8. Cesareo R, Palermo A, Pasqualini V, et al. Radiofrequency ablation on autonomously functioning thyroid nodules: a critical appraisal and review of the literature. Front Endocrinol (Lausanne). 2020; 11: 317.

9. Deandrea M., Trimboli P., Garino F., Mormile A., et al. Long-Term Efficacy of a Single Session of RFA for Benign Thyroid Nodules: A Longitudinal 5‑Year Observational Study. J Clin Endocrinol Metab. 2019 Sep 1; 104 (9): 3751–3756. doi: 10.1210/jc.2018–02808.

10. Geach T. Thyroid: Laser ablation of thyroid nodules is rapid, safe and effective. Nat Rev Endocrinol. 2015, Nov; 11 (11): 631. doi: 10.1038/ nrendo.2015.153.

11. Jung S.L., Baek J.H., Lee J.H., Shong Y.K., et al. Efficacy and Safety of Radiofrequency Ablation for Benign Thyroid Nodules: A Prospective Multicenter Study. Korean J Radiol. 2018 Jan-Feb; 19 (1): 167–174. doi: 10.3348/kjr.2018.19.1.167.

12. Kim JH, Baek JH, Lim HK et al. Тhyroid radiofrequency ablation guideline: Korean society of thyroid radiology. Korean J Radiol. 2018. 19 (4): 632–655.

13. Kim JH, Baek JH, Lim HK et al. Guideline Committee for the Korean Society of Thyroid Radiology (KSThR) and Korean Society of Radiology. Thyroid Radiofrequency Ablation Guideline: Korean Society of Thyroid Radiology. Korean J Radiol. 2018 Jul-Aug; 19 (4): 632–655. doi: 10.3348/kjr.2018.19.4.632.

14. Kim HJ, Cho SJ, Baek JH, Suh CH. Efficacy and safety of thermal ablation for autonomously functioning thyroid nodules: a systematic review and meta-analysis. Eur Radiol. Published online Month xx, 21xx. doi: 10.1007/s00330‑020‑07166‑0

15. Lee J., Shin H., Hahn S.Y., Park K.W., Choi J.S. Feasibility of Adjustable Electrodes for Radiofrequency Ablation of Benign Thyroid Nodules. Korean J Radiol. 2020, Mar; 21 (3): 377–383. doi: 10.3348/kjr.2019.0724.

16. Lim H.K., Cho S.J., Baek J.H., Lee K.D., et al. US-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: Efficacy and Safety in a Large Population. Korean J Radiol. 2019, Dec; 20 (12): 1653–1661. doi: 10.3348/kjr.2019.0192. Erratum in: Korean J Radiol. 2020 Apr; 21 (4): 510.

17. Mauri G, Nicosia L, Vigna PD, et al. Percutaneous laser ablation for benign and malignant thyroid diseases. Ultrasonography 2019; 38: 25–36.

18. Mauri G, Pacella CM, Papini E, et al. Image-guided thyroid ablation: proposal for standardization of terminology and reporting criteria. Thyroid. 2019; 29 (5): 611–618.

19. Mauri G., Gennaro N., Lee M.K., Baek J.H. Laser and radiofrequency ablations for benign and malignant thyroid tumors. Int J Hyperthermia. 2019 Oct; 36 (2): 13–20. doi: 10.1080/02656736.2019.1622795.

20. Offi C., Garberoglio S., Antonelli G., Esposito M.G., et al. The Ablation of Thyroid Nodule’s Afferent Arteries Before Radiofrequency Ablation: Preliminary Data. Front Endocrinol (Lausanne). 2021 Feb 11; 11: 565000. doi: 10.3389/fendo.2020.565000.

21. Pacella CM, Mauri G, Cesareo R, et al. A comparison of laser with radiofrequency ablation for the treatment of benign thyroid nodules: A propensity score matching analysis. Int J Hyperthermia 2017; 33: 911–919.

22. Papini E., Gugliemi R., Pacella C.M. Laser, radiofrequency, and ethanol ablation for the management of thyroid nodules. Curr Opin Endocrinol Diabetes Obes. 2016, Oct; 23 (5): 400–6. doi: 10.1097/MED.0000000000000282.

23. Papini E, Pacella CM, Solbiati LA et al. Minimally-invasive treatments for benign thyroid nodules: a Delphi-based consensus statement from the Italian minimally-invasive treatments of the thyroid (MITT) group. Int J Hyperth. 2019; 36 (1): 376–382.

24. Papini E, Monpeyssen H, Frasoldati A, Hegedüs L. European thyroid association clinical practice guideline for the use of image-guided ablation in benign thyroid nodules. Eur Thyroid J. 2020; 9 (4): 172–185.

25. Park HS, Baek JH, Park AW, Chung SR, Choi YJ, Lee JH. Thyroid radiofrequency ablation: updates on innovative devices and techniques. Korean J Radiol. 2017; 18 (4): 615–623.

26. Shan H.L., Zou D.Z., Shao Q. Evaluation of efficacy of laser ablation of thyroid nodules by contrast-enhanced ultrasound. J Southeast Univ (Med Sci Edi). 20164 35: 36–40.

27. Sim J.S., Baek J.H., Lee J., Cho W., Jung S.I. Radiofrequency ablation of benign thyroid nodules: depicting early sign of regrowth by calculating vital volume. Int J Hyperthermia. 2017, Dec; 33 (8): 905–910. doi: 10.1080/02656736.2017.1309083.

28. Trimboli P, Castellana M, Sconfienza LM, et al. Efficacy of thermal ablation in benign non- functioning solid thyroid nodule: a systematic review and meta-analysis. Endocrine. Published online Month xx, 21xx. doi: 10.1007/s12020‑019‑02019‑3.

29. Valcavi R, Riganti F, Bertini A et al, Percutaneous laser ablation of cold benign thyroid nodules: a 3‑year follow-up study in 122 patients. Thyroid. 2010, 20: 1253–1261.

30. Vuong N.L., Dinh L.Q., Bang H.T., et al. Radiofrequency Ablation for Benign Thyroid Nodules: 1‑Year Follow-Up in 184 Patients. World J Surg. 2019 Oct; 43 (10): 2447–2453. doi: 10.1007/s00268‑019‑05044‑5.

31. Wu R., Luo Y., Tang J., Yang M., et al. Ultrasound-guided radiofrequency ablation for papillary thyroid microcarcinoma: a retrospective analysis of 198 patients. Int J Hyperthermia. 2020; 37 (1): 168–174. doi: 10.1080/02656736.2019.1708480.

32. Xiaohua G., Fang W., Haiyan D., et al. Comparison of Ultrasound-Guided Percutaneous Polidocanol Injection Versus Percutaneous Ethanol Injection for Treatment of Benign Cystic Thyroid Nodules. Journal of Ultrasound in Medicine. 2018; 37 (6): 1423–1429.

33. Zhang M., Tufano R.P., Russell J.O., Zhang Y., et al. Ultrasound-Guided Radiofrequency Ablation Versus Surgery for Low-Risk Papillary Thyroid Microcarcinoma: Results of Over 5 Years’ Follow-Up. Thyroid. 2020 Mar; 30 (3): 408–417. doi: 10.1089/thy.2019.0147.

34. Magri F, Chytiris S, Molteni M, Croce L, et al. Laser photocoagulation therapy for thyroid nodules: long-term outcome and predictors of efficacy. J Endocrinol Invest. 2020 Jan; 43 (1): 95–100. doi: 10.1007/s40618‑019‑01085‑8.

35. Døssing H, Bennedbaek FN, Hegedüs L. Effect of ultrasoundguided interstitial laser photocoagulation of benign solitary solid cold thyroid nodules: one versus three treatments. Thyroid. 2006; 16: 763–768.

36. Papini E, Rago T, Gambelunghe G et al. long-term efcacy of ultrasound-guided laser ablation for benign solid thyroid nodules. Results of a three-year multicenter prospective randomized trial. J Clin Endocrinol Metab 2014, 99: 3653–3659.

37. Døssing H, Bennedbæk FN, Hegedüs L. Long-term outcome following interstitial laser photocoagulation of benign cold thyroid nodules. Eur J Endocrinol. 2011 Jul; 165 (1): 123–8. doi: 10.1530/EJE-11–0220.

38. Кузнецов Н.А., Родоман Г.В., Сумеди И.Р., Шалаева Т.И. и др. Склерозирующая терапия у больных с функциональной автономией щитовидной железы. Вестник Российского Государственного Медицинского Университета. 2010; 2: 22–26.

39. Кузнецов Н.А., Родоман Г.В., Сумеди И.Р., Шалаева Т.И. и др. Склеротерапия при лечении функциональной автономии щитовидной железы. Хирургия. 2010; 8: 11–15. [Kuznecov N.A., Rodoman G.V., Sumedi I. R, Shalaeva T.I., et al. Sclerotherapy for the treatment of thyroid functional anatomy. Hirurgiya. 2010; 8: 11–15. (in Russian)]

40. Сумеди И.Р., Шалаева Т.И., Свириденко Н.В., Чернер В.А., и др. Использование различных склерозантов для внутритканевой деструкции автономно функционирующих узловых образований щитовидной железы. Бюллетень ВСНЦ СО РАМН. 2010; 2 (72): 104– 108.

41. Сумеди И.Р., Шалаева Т.И., Свириденко Н.В., Чернер В.А. Малоинвазивные вмешательства в лечении тиреотоксикоза у больных пожилого возраста при функциональной автономии щитовидной железы. Клиническая геронтология. 2010; 9: 65.

42. Родоман Г.В., Сумеди И.Р., Шалаева Т.И., Свириденко Н.В., Чернер В.А. Хирургическое лечение функциональной автономии щитовидной железы. Хирург. 2017; 7 (153): 47–62.

43. Родоман Г.В., Сумеди И.Р., Свириденко Н.В., Шалаева Т.И., и др. Возможности малоинвазивного хирургического лечения больных с рецидивным узловым зобом. Хирург. 2017; 9–12 (158): 47–57.

44. Родоман Г.В., Сумеди И.Р., Свириденко Н.В., Шалаева Т.И. и др. Склеротерапия как альтернатива операции при лечении больных с рецидивным узловым зобом. Хирургия. Журнал им. Н.И. Пирогова. 2020; 5: 87–92.

45. Родоман Г.В., Сумеди И.Р., Свириденко Н.В., Шалаева Т.И. и др. Эффективность и безопасность склеротерапии при рецидивном узловом зобе. Хирург. 2020; 9–10 (179): 39–51.

46. Родоман Г.В., Шалаева Т.И., Сумеди И.Р., Свириденко Н.В., и др. Результаты склеротерапии при рецидивном и нерецидивном узловом зобе. Медико-социальная экспертиза и реабилитация. 2020; 23 (3): 24–30.

47. Gong X., Zhou Q., Wang F., Wu W., Chen X. Efficacy and safety of ultrasound guided percutaneous polidocanol sclerotherapy in benign cystic thyroid nodules: preliminary results. Int J Endocrinol. 2017; 2017: 8043429.

48. Gong X., Zhou Q., Chen S., Wang F., Wu W. Efficacy and safety of ultrasound‐guided percutaneous polidocanol sclerotherapy in benign predominantly cystic thyroid nodules: a prospective study. Curr Med Res Opin. 2017; 33: 1505–1510.

49. Cesareo R, Silvia Manfrini, Valerio Pasqualini, Cesare Ambrogi, and others, Laser Ablation Versus Radiofrequency Ablation for Thyroid Nodules: 12‑Month Results of a Randomized Trial (LARA II Study). The Journal of Clinical Endocrinology & Metabolism. 2021; 106, Issue 6, June: 1692–1701. doi.org/10.1210/clinem/dgab102.

50. Mauri G, Cova L, Monaco CG, et al. Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA). Int J Hyperthermia 2017; 33: 295–299.

51. Pacella CM, Mauri G, Achille G et al. Outcomes and risk factors for complications of laser ablation for thyroid nodules: a multicenter study on 1531 patients. J Clin Endocrinol Metab 2015; 100: 3903–3910.

52. Sui WF, Li JY, Fu J. Percutaneous laser ablation for benign thyroid nodules: A meta‐analysis. Oncotarget 2017; 8: 83225–83236.

53. Mauri G, Cova L, Ierace T et al. Treatment of metastatic lymph nodes in the neck from papillary thyroid carcinoma with percutaneous laser ablation. Cardiovasc Intervent Radiol 2016; 39: 1023–1030.

54. Guo Y, Li Z, Wang S, Liao X, Li C. Single-Fiber Laser Ablation in Treating Selected Metastatic Lymph Nodes of Papillary Thyroid Carcinoma and Benign Cold Thyroid Nodules-Preliminary Results. Lasers Surg Med. 2020 Jun; 52 (5): 408–418. doi: 10.1002/lsm.23150.

55. Zhou W, Zhang L, Zhan W et al. Percutaneous laser ablation for treatment of locally recurrent papillary thyroid carcinoma 15 mm. Clin Radiol. 2016; 71: 1233–1239.

56. Achille G, Zizzi S, Di Stasio E et al. Ultrasound-guided percutaneous laser ablation in treating symptomatic solid benign thyroid nodules: our experience in 45 patients. Head and Neck 2016; 38: 667–682.

57. Amabile G, Rotondi M, De Chiara G et al. Low-energy Interstitial Laser Photocoagulation for treatment of nonfunctioning thyroid nodules: therapeutic outcome in relation to pretreatment and treatment parameters. Thyroid 2006; 16 (8): 749–755. doi: 10.1089/thy.2006.16.749.

58. Dossing H, Bennedbaek FN, Bonnema SJ, Grupe P, Hegedu¨ s L. Randomized prospective study comparing a single radioiodine dose and a single laser therapy session in autonomously functioning thyroid nodules. Eur J Endocrinol. 2007; 157: 95–100.

59. Gambelunghe G, Fatone C, Ranchelli A, Fanelli C, Lucidi P, Cavaliere A, Avenia N, d’Ajello M, Santeusanio F, De Feo P. A randomized controlled trial to evaluate the efficacy of ultrasound-guided laser photocoagulation for treatment of benign thyroid nodules. J Endocrinol Invest. 2006; 29: 23–26.

60. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedu¨s L & Vitti P. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. Journal of Endocrinological Investigation. 2010; 33: 51–56.

61. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedus L, Vitti P. American Association of Clinical Endocrinologist, Associazione Medici Endocrinologi, and European Thyroid Association Medical Guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract. 2010; 16: 1–43.

62. Hegedus L. Therapy: A new nonsurgical therapy option for benign thyroid nodules? Nat Rev Endocrinol. 2009; 5: 476–478.

63. Pacella CM, Bizzarri G, Guglielmi R et al. Thyroid tissue; US-guided percutaneous interstitial laser ablation — a feasibility study. Radiology. 2000; 217: 673–677.

64. Amabile G, Rotondi M, Pirali B, Dionisio R, et al. Interstitial laser photocoagulation for benign thyroid nodules: time to treat large nodules. Lasers Surg Med. 2011 Sep; 43 (8): 797–803. doi: 10.1002/lsm.21114.

65. Gharib H, Hegedus L, Pacella CM et al. Clinical review: nonsurgical, image-guided, minimally invasive therapy for thyroid nodules. J Clin Endocrinol Metab. 2013; 98: 3949–3957.

66. Gharib H, Papini E, Garber JR et al. American Association Of Clinical Endocrinologists, American College Of Endocrinology, and Associazione Medici Endocrinologi Medical guidelines for clinical practice for the diagnosis and management of thyroid nodules — 2016 update. Endocr Pract. 2016; 22: 1–60.

67. Baek JH, Kim YS, Lee D, Huh JY & Lee JH. Benign predominantly solid thyroid nodules: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition. AJR. American Journal of Roentgenology. 2010; 194: 1137–1142. doi: 10.2214/ AJR.09.3372.

68. Jeong WK, Baek JH, Rhim H, Kim YS, et al. Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. European Radiology. 2008; 18: 1244–1250. doi: 10.1007/s00330‑008‑0880‑6.

69. Spiezia S, Garberoglio R, Milone F, Ramundo V, et al. Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation. Thyroid. 2009; 19: 219–225. doi: 10.1089/thy.2008.0202.

70. Могутов М.С. Эффективность интерстициальной лазерной фотокоагуляции в лечении узлового зоба. Анналы хирургии. 2007; 3: 23–26.

71. Pacella C.M. Thyroid tissue: US-guided percutaneos laser thermal ablation. Radiology. 2004; 232 (1): 395–400.

72. Gambelunghe G, Fede R, Bini V, Monacelli M, et al. Ultrasound-guided interstitial laser ablation for thyroid nodules is effective only at high total amounts of energy: results from a three-year pilot study. Surg Innov. 2013 Aug; 20 (4): 345–50. doi: 10.1177/1553350612459276.

73. de Freitas RMC, Miazaki AP, Tsunemi MH, et al. Laser Ablation of Benign Thyroid Nodules: A Prospective Pilot Study With a Preliminary Analysis of the Employed Energy. Lasers Surg Med. 2020 Apr; 52 (4): 323–332. doi: 10.1002/lsm.23144.

74. Gambelunghe G, Bini V, Stefanetti E, Colella R, et al. Thyroid nodule morphology affects the efficacy of ultrasound-guided interstitial laser ablation: a nested case-control study. Int J Hyperthermia. 2014 Nov; 30 (7): 486–9. doi: 10.3109/02656736.2014.963701.

75. Squarcia M, Mora M, Aranda G, Carrero E, et al. Long-Term Follow-Up of Single-Fiber Multiple Low-Intensity Energy Laser Ablation Technique of Benign Thyroid Nodules. Front Oncol. 2021 Dec 7; 11: 584265. doi: 10.3389/fonc.2021.584265.

76. Cakir B, Gul K, Ugras S, Ersoy R, et al. Percutaneous laser ablation of an autonomous thyroid nodule: Effects on nodule size and histopathology of the nodule 2 years after the procedure. Thyroid 2008; 18: 803–805.

77. Esnault O, Rouxel A, Le NE, Gheron G & Leenhardt L. Minimally invasive ablation of a toxic thyroid nodule by high-intensity focused ultrasound. AJNR. American Journal of Neuroradiology. 2010; 31: 1967–1968. doi: 10.3174/ajnr.A1979

78. Rotondi M, Amabile G, Leporati P, Di Filippo B, Chiovato L. Repeated laser thermal ablation of a large functioning thyroid nodule restores euthyroidism and ameliorates constrictive symptoms. J Clin Endocrinol Metab. 2009; 94: 382–383.

79. Negro R, Salem TM, Greco G. Laser ablation is more efective for spongiform than solid thyroid nodules. A 4‑year retrospective follow-up study. J Hyperth 2016, 32: 822–828.

80. Park HS, Baek JH, Park AW, Chung SR, et al. Thyroid radiofrequency ablation: updates on innovative devices and techniques. Korean J Radiol. 2017; 18 (4): 615–623.

81. Ritz JP, Lehmann KS, Zurbuchen U et al. Ex vivo and in vivo evaluation of laser-induced thermotherapy for nodular thyroid disease. Laser Surg Med 2009; 41: 479–486.

82. Кузнецов Н.А., Родоман Г.В., Сумеди И.Р., Шалаева Т.И., и др. Лазерная гипертермия в профилактике и лечении узлового токсического зоба. Вестник Российского государственного медицинского университета. 2011; 3: 31–34.

1. Aleksandrov YU.K., Saltykova V.G., Patrunov YU.N. The selection of patients for minimally invasive procedures on the thiroid nodules. Tavricheskiy Mediko-Biologicheskiy Vestnik. 2020; 23 (2): 187–194. (in Russian)

2. Slepcov I.V. Methods of minimally invasive treatment of thyroid and parathyroid gland diseases: annotation, dissertation.. of the Doctor of Medical Sciences: 14.01.17. Sankt-Peterburg, 2012; 46 р. (in Russian)

3. Achille G, Zizzi S, Di Stasio E, et al. Ultrasound‐guided percutaneous laser ablation in treating symptomatic solid benign thyroid nodules: Our experience in 45 patients. Head and Neck 2016; 38: 677–682.

4. Bernardi S, Giudici F, Cesareo R, et al. Five-year results of radiofrequency and laser ablation of benign thyroid nodules: a multicenter study from the Italian minimally invasive treatments of the thyroid group. Thyroid. Published online Month xx, 21xx. doi: 10.1089/thy.2020.0202.

5. Cesareo R, Palermo A, Pasqualini V, et al. Radiofrequency ablation for the management of thyroid nodules: a critical appraisal of the literature. Clin Endocrinol (Oxf). 2017; 87 (6): 639–648.

6. Cesareo R, Naciu AM, Iozzino M, et al. Nodule size as predictive factor of efficacy of radiofrequency ablation in treating autonomously functioning thyroid nodules. Int J Hyperthermia. 2018; 34 (5): 617–623.

7. Cesareo R, Palermo A, Benvenuto D, et al. Efficacy of radiofrequency ablation in autonomous functioning thyroid nodules. A systematic review and meta-analysis. Rev Endocr Metab Disord. 2019; 20 (1): 37–44.

8. Cesareo R, Palermo A, Pasqualini V, et al. Radiofrequency ablation on autonomously functioning thyroid nodules: a critical appraisal and review of the literature. Front Endocrinol (Lausanne). 2020; 11: 317.

9. Deandrea M., Trimboli P., Garino F., Mormile A., et al. Long-Term Efficacy of a Single Session of RFA for Benign Thyroid Nodules: A Longitudinal 5‑Year Observational Study. J Clin Endocrinol Metab. 2019 Sep 1; 104 (9): 3751–3756. doi: 10.1210/jc.2018–02808.

10. Geach T. Thyroid: Laser ablation of thyroid nodules is rapid, safe and effective. Nat Rev Endocrinol. 2015, Nov; 11 (11): 631. doi: 10.1038/ nrendo.2015.153.

11. Jung S.L., Baek J.H., Lee J.H., Shong Y.K., et al. Efficacy and Safety of Radiofrequency Ablation for Benign Thyroid Nodules: A Prospective Multicenter Study. Korean J Radiol. 2018 Jan-Feb; 19 (1): 167–174. doi: 10.3348/kjr.2018.19.1.167.

12. Kim JH, Baek JH, Lim HK et al. Тhyroid radiofrequency ablation guideline: Korean society of thyroid radiology. Korean J Radiol. 2018. 19 (4): 632–655.

13. Kim JH, Baek JH, Lim HK et al. Guideline Committee for the Korean Society of Thyroid Radiology (KSThR) and Korean Society of Radiology. Thyroid Radiofrequency Ablation Guideline: Korean Society of Thyroid Radiology. Korean J Radiol. 2018 Jul-Aug; 19 (4): 632–655. doi: 10.3348/kjr.2018.19.4.632.

14. Kim HJ, Cho SJ, Baek JH, Suh CH. Efficacy and safety of thermal ablation for autonomously functioning thyroid nodules: a systematic review and meta-analysis. Eur Radiol. Published online Month xx, 21xx. doi: 10.1007/s00330‑020‑07166‑0

15. Lee J., Shin H., Hahn S.Y., Park K.W., Choi J.S. Feasibility of Adjustable Electrodes for Radiofrequency Ablation of Benign Thyroid Nodules. Korean J Radiol. 2020, Mar; 21 (3): 377–383. doi: 10.3348/kjr.2019.0724.

16. Lim H.K., Cho S.J., Baek J.H., Lee K.D., et al. US-Guided Radiofrequency Ablation for Low-Risk Papillary Thyroid Microcarcinoma: Efficacy and Safety in a Large Population. Korean J Radiol. 2019, Dec; 20 (12): 1653–1661. doi: 10.3348/kjr.2019.0192. Erratum in: Korean J Radiol. 2020 Apr; 21 (4): 510.

17. Mauri G, Nicosia L, Vigna PD, et al. Percutaneous laser ablation for benign and malignant thyroid diseases. Ultrasonography 2019; 38: 25–36.

18. Mauri G, Pacella CM, Papini E, et al. Image-guided thyroid ablation: proposal for standardization of terminology and reporting criteria. Thyroid. 2019; 29 (5): 611–618.

19. Mauri G., Gennaro N., Lee M.K., Baek J.H. Laser and radiofrequency ablations for benign and malignant thyroid tumors. Int J Hyperthermia. 2019 Oct; 36 (2): 13–20. doi: 10.1080/02656736.2019.1622795.

20. Offi C., Garberoglio S., Antonelli G., Esposito M.G., et al. The Ablation of Thyroid Nodule’s Afferent Arteries Before Radiofrequency Ablation: Preliminary Data. Front Endocrinol (Lausanne). 2021 Feb 11; 11: 565000. doi: 10.3389/fendo.2020.565000.

21. Pacella CM, Mauri G, Cesareo R, et al. A comparison of laser with radiofrequency ablation for the treatment of benign thyroid nodules: A propensity score matching analysis. Int J Hyperthermia 2017; 33: 911–919.

22. Papini E., Gugliemi R., Pacella C.M. Laser, radiofrequency, and ethanol ablation for the management of thyroid nodules. Curr Opin Endocrinol Diabetes Obes. 2016, Oct; 23 (5): 400–6. doi: 10.1097/MED.0000000000000282.

23. Papini E, Pacella CM, Solbiati LA et al. Minimally-invasive treatments for benign thyroid nodules: a Delphi-based consensus statement from the Italian minimally-invasive treatments of the thyroid (MITT) group. Int J Hyperth. 2019; 36 (1): 376–382.

24. Papini E, Monpeyssen H, Frasoldati A, Hegedüs L. European thyroid association clinical practice guideline for the use of image-guided ablation in benign thyroid nodules. Eur Thyroid J. 2020; 9 (4): 172–185.

25. Park HS, Baek JH, Park AW, Chung SR, Choi YJ, Lee JH. Thyroid radiofrequency ablation: updates on innovative devices and techniques. Korean J Radiol. 2017; 18 (4): 615–623.

26. Shan H.L., Zou D.Z., Shao Q. Evaluation of efficacy of laser ablation of thyroid nodules by contrast-enhanced ultrasound. J Southeast Univ (Med Sci Edi). 20164 35: 36–40.

27. Sim J.S., Baek J.H., Lee J., Cho W., Jung S.I. Radiofrequency ablation of benign thyroid nodules: depicting early sign of regrowth by calculating vital volume. Int J Hyperthermia. 2017, Dec; 33 (8): 905–910. doi: 10.1080/02656736.2017.1309083.

28. Trimboli P, Castellana M, Sconfienza LM, et al. Efficacy of thermal ablation in benign non- functioning solid thyroid nodule: a systematic review and meta-analysis. Endocrine. Published online Month xx, 21xx. doi: 10.1007/s12020‑019‑02019‑3.

29. Valcavi R, Riganti F, Bertini A et al, Percutaneous laser ablation of cold benign thyroid nodules: a 3‑year follow-up study in 122 patients. Thyroid. 2010, 20: 1253–1261.

30. Vuong N.L., Dinh L.Q., Bang H.T., et al. Radiofrequency Ablation for Benign Thyroid Nodules: 1‑Year Follow-Up in 184 Patients. World J Surg. 2019 Oct; 43 (10): 2447–2453. doi: 10.1007/s00268‑019‑05044‑5.

31. Wu R., Luo Y., Tang J., Yang M., et al. Ultrasound-guided radiofrequency ablation for papillary thyroid microcarcinoma: a retrospective analysis of 198 patients. Int J Hyperthermia. 2020; 37 (1): 168–174. doi: 10.1080/02656736.2019.1708480.

32. Xiaohua G., Fang W., Haiyan D., et al. Comparison of Ultrasound-Guided Percutaneous Polidocanol Injection Versus Percutaneous Ethanol Injection for Treatment of Benign Cystic Thyroid Nodules. Journal of Ultrasound in Medicine. 2018; 37 (6): 1423–1429.

33. Zhang M., Tufano R.P., Russell J.O., Zhang Y., et al. Ultrasound-Guided Radiofrequency Ablation Versus Surgery for Low-Risk Papillary Thyroid Microcarcinoma: Results of Over 5 Years’ Follow-Up. Thyroid. 2020 Mar; 30 (3): 408–417. doi: 10.1089/thy.2019.0147.

34. Magri F, Chytiris S, Molteni M, Croce L, et al. Laser photocoagulation therapy for thyroid nodules: long-term outcome and predictors of efficacy. J Endocrinol Invest. 2020 Jan; 43 (1): 95–100. doi: 10.1007/s40618‑019‑01085‑8.

35. Døssing H, Bennedbaek FN, Hegedüs L. Effect of ultrasoundguided interstitial laser photocoagulation of benign solitary solid cold thyroid nodules: one versus three treatments. Thyroid. 2006; 16: 763–768.

36. Papini E, Rago T, Gambelunghe G et al. long-term efcacy of ultrasound-guided laser ablation for benign solid thyroid nodules. Results of a three-year multicenter prospective randomized trial. J Clin Endocrinol Metab 2014, 99: 3653–3659.

37. Døssing H, Bennedbæk FN, Hegedüs L. Long-term outcome following interstitial laser photocoagulation of benign cold thyroid nodules. Eur J Endocrinol. 2011 Jul; 165 (1): 123–8. doi: 10.1530/EJE-11–0220.

38. Kuznecov N.A., Rodoman G.V., Sumedi I.R., Shalaeva T.I. et al. Sclerosing therapy in patients with functional autonomy of thyroid. Vestnik Rossijskogo Gosudarstvennogo Medicinskogo Universiteta. 2010; 2: 22–26. (in Russian)

39. Kuznecov N.A., Rodoman G.V., Sumedi I. R, Shalaeva T.I., et al. Sclerotherapy for the treatment of thyroid functional anatomy. Hirurgiya. 2010; 8: 11–15. (in Russian)

40. Sumedi I. R, Shalaeva T.I., Sviridenko N.V., Cherner V.A., et al. Various sclerotherapy agents in the interstitial destruction of autonomous thyroid nodules. Byulleten’ VSNC SO RAMN. 2010; 2 (72): 104–108. (in Russian)

41. Sumedi I.R., Shalaeva T.I., Sviridenko N.V., Cherner V.A., Minimally invasive interventions in the treatment of thyrotoxicosis in elderly patients with functional autonomy of the thyroid gland. Klinicheskaya gerontologiya. 2010; 9: 65. (in Russian)

42. Rodoman G.V., Sumedi I. R, Shalaeva T.I., Sviridenko N.V., Cherner V.A. Surgical treatment of functional autonomy of the thyroid gland. Hirurg. 2017; 7 (153): 47–62. (in Russian)

43. Rodoman G.V., Sumedi I. R, Sviridenko N.V., Shalaeva T.I., et al. Possibilities of minimally invasive surgical treatment of patients with recurrent nodular goiter. Hirurg. 2017; 9–12 (158): 47–57. (in Russian)

44. Rodoman G.V., Sumedi I.R., Sviridenko N.V., Shalaeva T.I., et al. Sclerotherapy as an alternative to surgery for recurrent nodular goiter. Hirurgiya. Zhurnal im. N.I. Pirogova. 2020; 5: 87–92. (in Russian)]

45. Rodoman G.V., Sumedi I.R., Sviridenko N.V., Shalaeva T.I., et al. Efficacy and safety of sclerotherapy in recurrent nodular goiter. Hirurg. 2020; 9–10 (179): 39–51. (in Russian)

46. Rodoman G.V., Shalaeva T.I., Sumedi I.R., Sviridenko N.V., et al. Results of sclerotherapy for recurrent and non-recurrent nodular goiter. Mediko-social’naya ekspertiza i reabilitaciya. 2020; 23 (3): 24–30. (in Russian)

47. Gong X., Zhou Q., Wang F., Wu W., Chen X. Efficacy and safety of ultrasound guided percutaneous polidocanol sclerotherapy in benign cystic thyroid nodules: preliminary results. Int J Endocrinol. 2017; 2017: 8043429.

48. Gong X., Zhou Q., Chen S., Wang F., Wu W. Efficacy and safety of ultrasound‐guided percutaneous polidocanol sclerotherapy in benign predominantly cystic thyroid nodules: a prospective study. Curr Med Res Opin. 2017; 33: 1505–1510.

49. Cesareo R, Silvia Manfrini, Valerio Pasqualini, Cesare Ambrogi, and others, Laser Ablation Versus Radiofrequency Ablation for Thyroid Nodules: 12‑Month Results of a Randomized Trial (LARA II Study). The Journal of Clinical Endocrinology & Metabolism. 2021; 106, Issue 6, June: 1692–1701. doi.org/10.1210/clinem/dgab102.

50. Mauri G, Cova L, Monaco CG, et al. Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA). Int J Hyperthermia 2017; 33: 295–299.

51. Pacella CM, Mauri G, Achille G et al. Outcomes and risk factors for complications of laser ablation for thyroid nodules: a multicenter study on 1531 patients. J Clin Endocrinol Metab 2015; 100: 3903–3910.

52. Sui WF, Li JY, Fu J. Percutaneous laser ablation for benign thyroid nodules: A meta‐analysis. Oncotarget 2017; 8: 83225–83236.

53. Mauri G, Cova L, Ierace T et al. Treatment of metastatic lymph nodes in the neck from papillary thyroid carcinoma with percutaneous laser ablation. Cardiovasc Intervent Radiol 2016; 39: 1023–1030.

54. Guo Y, Li Z, Wang S, Liao X, Li C. Single-Fiber Laser Ablation in Treating Selected Metastatic Lymph Nodes of Papillary Thyroid Carcinoma and Benign Cold Thyroid Nodules-Preliminary Results. Lasers Surg Med. 2020 Jun; 52 (5): 408–418. doi: 10.1002/lsm.23150.

55. Zhou W, Zhang L, Zhan W et al. Percutaneous laser ablation for treatment of locally recurrent papillary thyroid carcinoma 15 mm. Clin Radiol. 2016; 71: 1233–1239.

56. Achille G, Zizzi S, Di Stasio E et al. Ultrasound-guided percutaneous laser ablation in treating symptomatic solid benign thyroid nodules: our experience in 45 patients. Head and Neck 2016; 38: 667–682.

57. Amabile G, Rotondi M, De Chiara G et al. Low-energy Interstitial Laser Photocoagulation for treatment of nonfunctioning thyroid nodules: therapeutic outcome in relation to pretreatment and treatment parameters. Thyroid 2006; 16 (8): 749–755. doi: 10.1089/thy.2006.16.749.

58. Dossing H, Bennedbaek FN, Bonnema SJ, Grupe P, Hegedu¨ s L. Randomized prospective study comparing a single radioiodine dose and a single laser therapy session in autonomously functioning thyroid nodules. Eur J Endocrinol. 2007; 157: 95–100.

59. Gambelunghe G, Fatone C, Ranchelli A, Fanelli C, Lucidi P, Cavaliere A, Avenia N, d’Ajello M, Santeusanio F, De Feo P. A randomized controlled trial to evaluate the efficacy of ultrasound-guided laser photocoagulation for treatment of benign thyroid nodules. J Endocrinol Invest. 2006; 29: 23–26.

60. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedu¨s L & Vitti P. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. Journal of Endocrinological Investigation. 2010; 33: 51–56.

61. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedus L, Vitti P. American Association of Clinical Endocrinologist, Associazione Medici Endocrinologi, and European Thyroid Association Medical Guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract. 2010; 16: 1–43.

62. Hegedus L. Therapy: A new nonsurgical therapy option for benign thyroid nodules? Nat Rev Endocrinol. 2009; 5: 476–478.

63. Pacella CM, Bizzarri G, Guglielmi R et al. Thyroid tissue; US-guided percutaneous interstitial laser ablation — a feasibility study. Radiology. 2000; 217: 673–677.

64. Amabile G, Rotondi M, Pirali B, Dionisio R, et al. Interstitial laser photocoagulation for benign thyroid nodules: time to treat large nodules. Lasers Surg Med. 2011 Sep; 43 (8): 797–803. doi: 10.1002/lsm.21114.

65. Gharib H, Hegedus L, Pacella CM et al. Clinical review: nonsurgical, image-guided, minimally invasive therapy for thyroid nodules. J Clin Endocrinol Metab. 2013; 98: 3949–3957.

66. Gharib H, Papini E, Garber JR et al. American Association Of Clinical Endocrinologists, American College Of Endocrinology, and Associazione Medici Endocrinologi Medical guidelines for clinical practice for the diagnosis and management of thyroid nodules — 2016 update. Endocr Pract. 2016; 22: 1–60.

67. Baek JH, Kim YS, Lee D, Huh JY & Lee JH. Benign predominantly solid thyroid nodules: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition. AJR. American Journal of Roentgenology. 2010; 194: 1137–1142. doi: 10.2214/AJR.09.3372.

68. Jeong WK, Baek JH, Rhim H, Kim YS, et al. Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. European Radiology. 2008; 18: 1244–1250. doi: 10.1007/s00330‑008‑0880‑6.

69. Spiezia S, Garberoglio R, Milone F, Ramundo V, et al. Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation. Thyroid. 2009; 19: 219–225. doi: 10.1089/thy.2008.0202.

70. Mogutov, M.S. The effectiveness of interstitial laser photocoagulation in the treatment of nodular goiter. Annaly hirurgii. 2007; 3: 23–26. (in Russian)]

71. Pacella C.M. Thyroid tissue: US-guided percutaneos laser thermal ablation. Radiology. 2004; 232 (1): 395–400.

72. Gambelunghe G, Fede R, Bini V, Monacelli M, et al. Ultrasound-guided interstitial laser ablation for thyroid nodules is effective only at high total amounts of energy: results from a three-year pilot study. Surg Innov. 2013 Aug; 20 (4): 345–50. doi: 10.1177/1553350612459276.

73. de Freitas RMC, Miazaki AP, Tsunemi MH, et al. Laser Ablation of Benign Thyroid Nodules: A Prospective Pilot Study With a Preliminary Analysis of the Employed Energy. Lasers Surg Med. 2020 Apr; 52 (4): 323–332. doi: 10.1002/lsm.23144.

74. Gambelunghe G, Bini V, Stefanetti E, Colella R, et al. Thyroid nodule morphology affects the efficacy of ultrasound-guided interstitial laser ablation: a nested case-control study. Int J Hyperthermia. 2014 Nov; 30 (7): 486–9. doi: 10.3109/02656736.2014.963701.

75. Squarcia M, Mora M, Aranda G, Carrero E, et al. Long-Term Follow-Up of Single-Fiber Multiple Low-Intensity Energy Laser Ablation Technique of Benign Thyroid Nodules. Front Oncol. 2021 Dec 7; 11: 584265. doi: 10.3389/fonc.2021.584265.

76. Cakir B, Gul K, Ugras S, Ersoy R, et al. Percutaneous laser ablation of an autonomous thyroid nodule: Effects on nodule size and histopathology of the nodule 2 years after the procedure. Thyroid 2008; 18: 803–805.

77. Esnault O, Rouxel A, Le NE, Gheron G & Leenhardt L. Minimally invasive ablation of a toxic thyroid nodule by high-intensity focused ultrasound. AJNR. American Journal of Neuroradiology. 2010; 31: 1967–1968. doi: 10.3174/ajnr.A1979.

78. Rotondi M, Amabile G, Leporati P, Di Filippo B, Chiovato L. Repeated laser thermal ablation of a large functioning thyroid nodule restores euthyroidism and ameliorates constrictive symptoms. J Clin Endocrinol Metab. 2009; 94: 382–383.

79. Negro R, Salem TM, Greco G. Laser ablation is more efective for spongiform than solid thyroid nodules. A 4‑year retrospective follow-up study. J Hyperth 2016, 32: 822–828.

80. Park HS, Baek JH, Park AW, Chung SR, et al. Thyroid radiofrequency ablation: updates on innovative devices and techniques. Korean J Radiol. 2017; 18 (4): 615–623.

81. Ritz JP, Lehmann KS, Zurbuchen U et al. Ex vivo and in vivo evaluation of laser-induced thermotherapy for nodular thyroid disease. Laser Surg Med 2009; 41: 479–486.

82. Kuznecov N.A., Rodoman G.V., Sumedi I. R, Shalaeva T.I., et al. Laser termotherapy in prevention and treatment of toxic nodular goiter. Vestnik Rossijskogo gosudarstvennogo medicinskogo universiteta. 2011; 3: 31–34. (in Russian)]

По оценкам европейских исследователей, частота обнаружения узлов щитовидной железы (ЩЖ) достигает 19–68% в зависимости от наличия дефицита йода в регионе. Симптоматические узлы требуют хирургического вмешательства, но операция сопровождается риском значимых осложнений, включающих гипопаратиреоз, повреждение гортанного нерва, кровотечение, а также косметическими проблемами в связи с рубцеванием кожи и невозможна при тяжелой сопутствующей патологии или отказе пациента, а медикаментозное лечение недостаточно эффективно и провоцирует ряд нежелательных явлений.

Альтернативные оперативному вмешательству минимально инвазивные процедуры — это склеротерапия, диатермокоагуляция, криодеструкция и методы радиочастотной (РЧА), микроволновой, высокоинтенсивной сфокусированной ультразвуковой и лазерной (ЛТА) аблации [1–33]. Эффекты малоинвазивных методов основаны на локальном воздействии физических или химических факторов и не затрагивают основную массу ткани ЩЖ, поэтому нормальная продукция тиреоидных гормонов в долгосрочной перспективе не нарушается [34]. Малоинвазивные процедуры деструкции выполняются амбулаторно и сопровождаются низким риском осложнений. Считается, что уменьшение объема узла после однократных процедур склеротерапии этанолом и физической аблации сопоставимо и составляет около 50% [35]. Проведение нескольких процедур аблации увеличивает эффект в среднем на 33% [36].

Соотношение риска и пользы малоинвазивных методов лечения доброкачественного узлового зоба в настоящее время все еще изучается, и единого подхода к их применению не существует. Целесообразность этаноловой склеротерапии, несмотря на простоту ее проведения и невысокую стоимость, давно подвергается сомнению как из‑за недостаточной эффективности, так и из‑за побочных эффектов, связанных с просачиванием этанола [37]. Гораздо эффективнее и безопаснее оказалось использование другого склерозанта — полидоканола [32, 38–48], позволяющее в подавляющем большинстве случаев добиться устранения функциональной автономии, а у трети пациентов обеспечить полное исчезновение узлов, что превышает возможности используемых сейчас режимов аблационных методов.

Для Цитирования:
Шалаева Татьяна Ильинична, Свириденко Надежда Владимировна, Устаалиева Патимат Багандовна, Перспективы лазерной аблации доброкачественных узлов щитовидной железы. Обзор литературы. Хирург. 2023;6.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: