По всем вопросам звоните:

+7 495 274-22-22

УДК: 615.015 DOI:10.33920/med-13-2001-01

Особенности фармакокинетики лекарственных средств, применяемых в виде быстродиспергируемых оральных систем доставки

ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова (Сеченовский Университет)», тел. (раб.): + 7 495 691 00 73, Е-mail: aganusya1@yandex.ru
Иван Иванович Краснюк — профессор заведующий кафедрой фармацевтической технологии Института фармации, ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова (Сеченовский Университет)», д-р фарм. наук, профессор кафедры фармацевтической технологии, 127422, г. Москва, Дмитровский пр-д, д. 16, кв. 60, тел. (раб.): + 7 495 690 25 60, тел. (моб.): +7 916 697 45 34, Е-mail: krasnyuki@mail.ru
ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова (Сеченовский Университет)», 129344, г. Москва, ул. Енисейская, д. 5, кв. 135, тел. (раб.):+ 7 495 691 00 73, тел. (моб.): + 7 915 474 39 78, Е-mail: aganusya1@yandex.ru
ФГАОУ ВО «Первый МГМУ им. И.М.Сеченова (Сеченовский Университет)», тел. (раб.): + 7 495 691 00 73, тел. (моб.): + 7 905 556 30 90, Е-mail: aganusya1@yandex.ru

Доставка лекарственных веществ через слизистую оболочку полости рта является альтернативным путем системной доставки, который имеет ряд преимуществ перед инъекционным и пероральным путями введения. Поскольку слизистая оболочка полости рта сильно васкуляризирована, лекарственные препараты, которые всасываются через слизистую оболочку полости рта, непосредственно попадают в системный кровоток, избегая эффекта первого прохождения через печень. Для некоторых препаратов это приводит к более быстрому началу действия. Однако данный путь введения может использоваться далеко не для всех веществ. Это объясняется особенностями строения слизистой оболочки полости рта, а также физико-химическими свойствами лекарственных веществ.

Литература:

1. Ghosh T. K., Pfister W. R. Drug Delivery to the Oral Cavity. Taylor & Francis. 2005; 414 p.

2. Aungst B. J. Intestinal permeation enhancers // J Pharm Sci 2000; 89 (4): 429–442.

3. Фармацевтическая технология. Твердые лекарственные формы / под ред. С. А. Кедика. — М.: ЗАО «Институт фармацевтических технологий, 2011. — 662 с.

4. Леонова М. В. Новые лекарственные формы и системы доставки лекарственных средств: особенности пероральных лекарственных форм. Часть 1 // Лечебное дело. — 2009. — № 2. — С. 21–31.

5. Preis M. Orally Disintegrating Films and Mini-Tablets — Innovative Dosage Forms of Choice for Pediatric Use // AAPS Pharm Sci Tech 2015; 16 (2): 234–241.

6. Parkash V, Maan S. Fast disintegrating tablets: Opportunity in drug delivery system // J Adv Pharm Technol Res 2011; 2 (4): 223–235.

7. Козлова Ж. М., Заболотная П. Г., Маслова М. Н. Быстродиспергируемые оральные системы доставки // Новая наука: от идеи к результату: сб. статей международной научно-практической конференции. — 2015. — С. 75–77.

8. Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khand A. Orally disintegrating films: A modern expansion in drug delivery system // Saudi Pharm J. 2016; 24 (5): 537–546.

9. Narang N, Sharma J. Sublingual mucosa as a route for systemic drug delivery // International Journal of Pharmacy and Pharmaceutical Sciences, 2011; 3 (2): 18–22.

10. Шевченко А. М., Ковалевская Е. Г. Технологические особенности разработки состава и способов производства ородисперсных лекарственных форм // Разработка и регистрация лекарственных средств. 2014; 6: 30–34.

11. Терапевтическая стоматология / под ред. Г.М. Барера. — М.: ГЭОТАР-Медиа, 2005. — Ч. 3. — 288 с.

12. Chen S. Y., Squier C. A The ultrastructure of the oral epithelium. In: Meyer J, Squier CA, Gerson SJ (eds.) The Structure and Function of Oral Mucosa // Pergamon Press, Oxford, 1984: 7–30.

13. Squier C. A., Wertz P. W. Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone MJ (ed.), Oral Mucosal Drug Delivery. Marcel Dekker, New York, 1996: 1–26.

14. Law S, Wertz PW, Swartzendruber DC, Squier CA. Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy // Arch Oral Biol, 1995; 40: 1085–1091.

15. Wertz PW, Swartzendruber DC, Squier CA. Regional variation in the structure and permeability of oral mucosa and skin // Adv Drug Del Rev 1993; 12: 1–12.

16. Swartzendruber DC. Studies of epidermal lipids using electron microscopy // Semin Dermatol 1992; 11: 157–161.

17. Squier CA. Membrane coating granules in nonkeratinizing oral epithelium. J Ultrastruct Res 1977; 60: 212–220.

18. Hayward AF. Ingestion of colloid in a keratinized epithelium and its localization in membranecoating granules // J Anat 1976; 121: 313–321.

19. Squier CA, Hall BK. The permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier // J Invest Dermatol 1985; 84: 176–179.

20. Shojaie AH. Buccal mucosa as a route for systemic drug delivery: A review // J Pharm Pharm Sci 1998; 1 (1): 15–30.

21. Senel, S, Hincal AA. Drug permeation enhancement via buccal route: Possibilities and limitations // J. Control. Release 2001; 72 (1-3): 133−144.

22. Gandhi, B. R., and Robinson, R.J. Oral cavity as a site for bioadhesive drug delivery // Adv. Drug Deliv. Rev 1994; 13: 43−74.

23. Zhang H, Zhang J, Streisand JB. Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications // Clin. Pharmacokinet. 2002; 41 (9): 661680.

24. Zhang, H, Robinson, RJ. Routes of Drug Transport across Oral Mucosa in Oral Mucosal Drug Delivery. 1996; New York: Marcel Dekker.

25. Veuillez F, Kalia YN, Jacques Y, Deshusses J, Buri P. Factors and strategies for improving buccal absorption of peptides // Eur. J. Pharm. Biopharm. 2001; 51 (2): 93−109.

26. McElnay JC. Buccal absorption of drugs. In: Swarbrick J, Boylan JC (eds.) Encyclopedia of Pharmaceutical Technology. Marcel Dekker, 1990; New York, pp 189–211.

27. Rathbone MJ, Drummond BK, Tucker IG. The oral cavity as a site for systemic drug delivery // Adv Drug Del Rev 1994; 13: 1–22.

28. Siegel IA, Hall SH, Stambaugh R. Permeability of the oral mucosa. In: Squier CA, Meyer J (eds.) Current Concepts of the Histology of Oral Mucosa 1971; pp 274–286.

29. Beckett AH, Triggs EJ. Buccal absorption of basic drugs and its application as an in vivo model of passive drug transfer through lipid membranes // J. Pharm. Pharmacol 1967; 19: 31–41.

30. Dearden JC, Tomlinson E. Correction for effect of dilution on diffusion through a membrane // J Pharm Sci 1971; 60: 1278–1279.

31. Schürmann W, Turner P/ Membrane model of the human oral mucosa as derived from buccal absorption performance and physicochemical properties of the beta-blocking drugs atenolol and propranolol // J Pharm Pharmacol 1978; 30: 137–147. ФАРМАЦЕВТИЧЕСКАЯ ТЕХНОЛОГИЯ

32. Tucker IG. A method to study the kinetics of oral mucosal drug absorption from solutions // J Pharm Pharmacol 1988; 40: 679–683.

33. Barsuhn CL, Olanoff LS, Gleason DD, Adkins EL, Ho NFH. Human buccal absorption of flurbiprofen // Clin Pharmacol Ther 1988; 44: 225–231.

34. Kurosaki Y, Yano K, Kimura T. Perfusion cells for studying regional variation in oral-mucosal permeability in humans. I: Kinetic aspects in oral-mucosal absorption of alkylparabens // Pharm Res 1997; 14: 1241–1245.

35. Kurosaki Y, Yano K, Kimura T. Perfusion cells for studying regional variation in oral mucosal permeability in humans. 2. A specialized transport mechanism in D-glucose absorption exists in dorsum of tongue // J Pharm Sci 1998; 87: 613–615.

36. Oh CK, Ritschel WA. Biopharmaceutic aspects of buccal absorption of insulin // Methods Find Exp Clin Pharmacol 1990; 12: 205–212.

37. Rathbone MJ. Human buccal absorption. I. A method for estimating the transfer kinetics of drugs across the human buccal membrane // Int J Pharm 1991; 69: 103–108.

38. Rathbone MJ. Human buccal absorption. II. A comparative study of the buccal absorption of some parahydroxybenzoic acid derivatives using the buccal absorption test and a buccal perfusion cell // Int J Pharm 1991; 74:189–194.

39. Yamahara H, Suzuki T, Mizobe M, Noda K, Samejima M. In situ perfusion system for oral mucosal absorption in dogs // J Pharm Sci 1990; 79: 963–967.

40. Zhang J, Niu S, McJames S, Stanley T. Buccal absorption of insulin in an in vivo dog model — evidence of mucosal storage // Pharm Res 1991; 8: S — 155.

41. Zhang J, Niu S, Maland LJ, Barrus BK, Freimann VR, Hague BI. Buccal permeability of oral transmucosal fentanyl citrate (OTFCTM) in a dog model // Pharm Res 1991; 8: S — 155.

42. Ceschel GC, Maffei P, Sforzini A, Lombardi Borgia S, Yasin A, Ronchi C. In vitro permeation through porcine buccal mucosa of caffeic acid phenetyl ester (CAPE) from a topical mucoadhesive gel containing propolis // Fitoterapia 73 Suppl. 2002; 1: 44–52.

43. Lee J, Kellaway IW. Combined effect of oleic acid and polyethylene glycol 200 on buccal permeation of [D-ala2 , D-leu5] enkephalin from a cubic phase of glyceryl monooleate // Int J Pharm 2000; 204: 137–144.

44. Senel S, Duchкne D, Hincal AA, Capan Y, Ponchel G. In vitro studies on enhancing effect of sodium glycocholate on transbuccal permeation of morphine hydrochloride // J Control Release 1998; 51: 107–113.

45. Squier CA, Kremer M, Wertz PW. Continuous flow mucosal cells for measuring the in vitro permeability of small tissue samples // J Pharm Sci 1997; 86: 82–84.

46. van der Bijl P, van Eyk AD, Thompson IOC. Effect of freezing on the permeability of human buccal and vaginal mucosa // S Afr J Sci 1998; 94: 499–502.

47. van der Bijl P, van Eyk AD, Thompson IO. Penetration of human vaginal and buccal mucosa by 4.4-kd and 12-kd fluorescein-isothiocyanate-labeled dextrans // Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998; 85: 686–691.

48. van der Bijl P, van Eyk AD, Thompson IO. Permeation of 17β-estradiol through human vaginal and buccal mucosa // Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998; 85: 393–398.

49. van der Bijl P, van Eyk AD, Thompson IO, Stander IA. Diffusion rates of vasopressin through human vaginal and buccal mucosa // Eur J Oral Sci 1998; 106: 958–962.

50. van der Bijl P, Gluckman HL, van Eyk AD, Thompson IOC. Permeability of lichen planus lesions and healthy buccal mucosa to water // SADJ 1998; 53: 493–496.

51. Xiang J, Fang X, Li X. Transbuccal delivery of 2_,3_-dideoxycytidine: In vitro permeation study and histological investigation // Int J Pharm 2002; 231: 57–66.

52. Artusi M, Santi P, Colombo P, Junginger HE. Buccal delivery of thiocolchicoside: In vitro and in vivo permeation studies // Int J Pharm 2003; 250: 203–213.

53. de Vries ME, Boddé HE, Verhoef JC, Ponec M, Crane WIHM, Junginger HE. Localization of the permeability barrier inside porcine buccal mucosa: A combined in vitro study of drug permeability, electrical resistance and tissue morphology // Int J Pharm 1991; 76: 25–35.

54. Deneer VHM, Drese GB, Roemelé PEH, Verhoef JC, Lie-A-Huen L, Kingma JH, Brouwers JRBJ, Junginger HE. Buccal transport of flecainide and sotalol: Effect of a bile salt and ionization state // Int J Pharm 2002; 241: 127–134.

55. Hansen LB, Christrup LL, Bundgaard H. Enhanced delivery of ketobemidone through porcine buccal mucosa in vitro via more lipophilic ester prodrugs // Int J Pharm 1992; 88: 237–242.

56. Hoogstraate AJ, Senel S, Cullander C, Verhoef J, Junginger HE, Boddé HE. Effects of bile salts on transport rates and routes of FITC-labelled compounds across porcine buccal epithelium in vitro // J Control Release 1996; 40: 211–221.

57. Hoogstraate AJ, Cullander C, Nagelkerke JF, Senel S, Verhoef JC, Junginger HE, Boddé HE. Diffusion rates and transport pathways of fluorescein isothiocyanate (FITC) — labeled model compounds through buccal epithelium // Pharm Res 1994; 11: 83–89.

58. Nicolazzo JA, Reed BL, Finnin BC. The effect of various in vitro conditions on the permeability characteristics of the buccal mucosa // J Pharm Sci 2003; 92: 2399–2410.

59. Nicolazzo JA, Reed BL, Finnin BC. Assessment of the effects of sodium dodecyl sulfate on the buccal permeability of caffeine and estradiol // J Pharm Sci 2004; 93: 431–440.

60. Nicolazzo JA, Reed BL, Finnin BC. Modification of buccal drug delivery following pretreatment with skin penetration enhancers // J Pharm Sci 2004; 93: 2054–2063.

61. Nicolazzo JA, Reed BL, Finnin BC. Enhanced buccal mucosal retention and reduced buccal permeability of estradiol in the presence of padimate O and Azone® —a mechanistic study // J Pharm Sci 2005; 94: 873–882.

62. Nicolazzo JA, Reed BL, Finnin BC. Enhancing the buccal mucosal uptake and retention of triamcinolone acetonide // J Control Release 2005; 105: 240–248.

63. Senel S, Hoogstraate AJ, Spies F, Verhoef JC, Bos-van Geest A, Junginger HE, Boddé HE. Enhancement of in vitro permeability of porcine buccal mucosa by bile salts: Kinetic and histological studies // J Control Release 1994; 32: 45–56.

64. Senel S, Capan Y, Sargon MF, Ikinci G, Solpan D, Güven O, Boddé HE, Hincal AA. Enhancement of transbuccal permeation of morphine sulfate by sodium glycodeoxycholate in vitro // J Control Release 1997; 45: 153–162.

65. Hoogstraate AJ, Boddé HE. Methods for assessing the buccal mucosa as a route of drug delivery // Adv Drug Del Rev 1993; 12: 99–125.

66. Jacobsen J, Pedersen M, Rassing MR. TR146 cells as a model for human buccal epithelium: II. Optimisation and use of a cellular sensitivity MTS/PMS assay // Int J Pharm 1996; 141: 217–225.

67. Nielsen HM, Rassing MR. Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro: Effect of pH and concentration // Eur J Pharm Sci 2002; 16: 151–157.

68. Selvaratnam L, Cruchley AT, Navsaria H, Wertz PW, Hagi-Pavli EP, Leigh IM, Squier CA, Williams DM. Permeability barrier properties of oral keratinocyte cultures: A model of intact human oral mucosa // Oral Dis 2001; 7: 252–258.

69. Kirsten R, Nelson K,KirstenD, et al. Clinical pharmacokinetics of vasodilators. Part II // Clin Pharmacokinet 1998; 35 (1): 9–36.

70. Bogaert MG. Clinical pharmacokinetics of nitrates // Cardiovasc Drugs Ther 1994; 8: 693–9.

71. Al-Furaih TA, McElnay JC, Elborn JS, et al. Sublingual captopril: a pharmacokinetic and pharmacodynamic evaluation // Eur J Clin Pharmacol 1991; 40: 393–8.

72. McElnay JC, Al-Furaih TA, Hughes CM, et al. The effect of pH on the buccal and sublingual absorption of captopril // Eur J Clin Pharmacol 1995; 48: 373–9.

73. Asthana OP, Woodcock BG, Wenchel M, et al. Verapamil disposition and effect on PQintervals after buccal, oral and intravenous administration // Drug Res 1984; 34 (1): 498–502.

74. John DN, Fort S, Lewis MJ, et al. Pharmacokinetics and pharmacodynamics of verapamil following sublingual and oral administration to healthy volunteers // Br J Clin Pharmacol 1992; 33: 623–7.

75. Fort S, Lewis MJ, Luscombe DK, et al. Preliminary investigation of the efficacy of sublingual verapamil in the management of acute atrial fibrillation and flutter // Br J Clin Pharmacol 1994; 37: 460–3.

76. Berk SI, Beckman K, Hoon TJ, et al. Comparison of the pharmacokinetics and electrocardiographic effects of sublingual and intravenous verapamil // Pharmacotherapy 1992; 12 (1): 33–9.

77. Al-Waili NS, Hasan NA. Efficacy of sublingual verapamil in patients with severe essential hypertension: comparison with sublingual nifedipine // Eur J Med Res 1999; 4: 193–8.

78. Sasaki S, Koumi S, Sato R, et al. Kinetics of buccal absorption of propafenone single oral loading dose in healthy humans // Gen Pharmacol 1998; 31 (4): 589–91.

79. http://www.fda.gov/

80. http://www.accessdata.fda.gov/scripts/cder/ob/default.cfm

81. https://www.drugs.com/

82. http://www.ema.europa.eu/ema/

83. http://grls.rosminzdrav.ru/Default.aspx

84. Zeng F, Wang L, Zhang W, Shi K, Zong L. Formulation and In Vivo Evaluation of Orally Disintegrating Tablets of Clozapine/Hydroxypropyl-β-cyclodextrin Inclusion Complexes // AAPS PharmSciTech. 2013; 14 (2): 854–860.

85. Montgomery W, Treuer T, Karagianis J, Ascher-Svanum H, Harrison G. Orally disintegrating olanzapine review: effectiveness, patient preference, adherence, and other properties // Patient Prefer Adherence. 2012; 6: 109–125.

86. Zhao J, Ou J, Xue H, Liu L, Montgomery W, Treuer T. Clinical utility of orally disintegrating olanzapine in Chinese patients with schizophrenia: a review of effectiveness, patient preference, adherence, and other properties // Neuropsychiatr Dis Treat. 2014; 10: 355– 359.

87. Czekalla J, Wagner T, Schacht A, Kluge M, Kinon B. Effectiveness and medication acceptance of olanzapine disintegrating tablets compared to standard olanzapine tablets in acutely treated psychiatric patients // Patient Prefer Adherence. 2007; 1: 19–27.

88. Liew KB, Fung Tan YT, Peh KK. Characterization of Oral Disintegrating Film Containing Donepezil for Alzheimer Disease // AAPS PharmSciTech. 2012; 13 (1): 134–142.

89. Wagner DS, Gauger V, Chiravuri D, Faust K. Ondansetron oral disintegrating tablets for the prevention of postoperative vomiting in children undergoing strabismus surgery // Ther Clin Risk Manag. 2007; 3 (4): 691–694.

90. Khan S, Kataria P, Nakhat P, Yeole P. Taste masking of ondansetron hydrochloride by polymer carrier system and formulation of rapid-disintegrating tablets // AAPS PharmSciTech. 2007; 8 (2): 127–133.

91. Keny RV, Desouza C, Lourenco CF. Formulation and Evaluation of Rizatriptan Benzoate Mouth Disintegrating Tablets // Indian J Pharm Sci. 2010; 72 (1): 79–85.

92. Shapero G, Dowson A, Lacoste JP, Almqvist P. Improved migraine management in primary care: results of a patient treatment experience study using zolmitriptan orally disintegrating tablet // Int J Clin Pract. 2006; 60 (12): 1530–1535.

93. Green R, Hicks RW. Orally disintegrating vardenafil tablets for the treatment of erectile dysfunction: efficacy, safety, and patient acceptability // Patient Prefer Adherence. 2011; 5: 181–185.

94. Fukui-Soubou M, Terashima Hi, Kawashima K, Utsunomiya O, Terada T. Efficacy, Safety, and Palatability of RACTAB® Formulation Amlodipine Orally Disintegrating Tablets // Drugs R D. 2011 Dec; 11 (4): 327–336.

95. Balata GF, Zidan AS, Abourehab MAS, Essa EA. Rapid disintegrating tablets of simvastatin dispersions in polyoxyethylene-polypropylene block copolymer for maximized disintegration and dissolution // Drug Des Devel Ther. 2016; 10: 3211–3223.

96. Xia B, Yang Z, Zhou H, Lukacova V, Zhu W, Milewski M, Kesisoglou F. Development of a Novel Oral Cavity Compartmental Absorption and Transit Model for Sublingual Administration: Illustration with Zolpidem // AAPS J. 2015; 17 (3): 631–642.

97. Халикова Э. Р., Маслова М. Н., Заболотная П. Г., Козлова Ж. М. Выбор способа грануляции для создания растворимых таблеток ускоренного высвобождения: мат-лы 6-й международной научно-методической конференции «Фармобразование-2016». ФГБОУ ВО «Воронежский государственный университет», 2016. — С. 576–579.

98. Козлова Ж. М., Пчелинцев С. О., Халикова Э. Р., Заболотная П. Г., Маслова М. Н., Ким Г. А. Использование современных комбинированных вспомогательных веществ для получения таблеток, диспергируемых в ротовой полости, методом прямого прессования // Разработка и регистрация лекарственных средств 2016; 2 (15): 46–50.

1. Al-Furaih TA, McElnay JC, Elborn JS, et al. Sublingual captopril: a pharmacokinetic and pharmacodynamic evaluation. Eur J Clin Pharmacol 1991; 40: 393-8.

2. Al-Waili NS, Hasan NA. Efficacy of sublingual verapamil in patients with severe essential hypertension: comparison with sublingual nifedipine. Eur J Med Res 1999; 4: 193-8.

3. Artusi M, Santi P, Colombo P, Junginger HE. Buccal delivery of thiocolchicoside: In vitro and in vivo permeation studies. Int J Pharm 2003; 250: 203–213.

4. Asthana OP, Woodcock BG, Wenchel M, et al. Verapamil disposition and effect on PQintervals after buccal, oral and intravenous administration. Drug Res 1984; 34 (1): 498-502.

5. Aungst B.J. Intestinal permeation enhancers. J Pharm Sci 2000; 89 (4): 429–442.

6. Balata GF, Zidan AS, Abourehab MAS, Essa EA. Rapid disintegrating tablets of simvastatin dispersions in polyoxyethylene–polypropylene block copolymer for maximized disintegration and dissolution. Drug Des Devel Ther. 2016; 10: 3211–3223.

7. Barsuhn CL, Olanoff LS, Gleason DD, Adkins EL, Ho NFH. Human buccal absorption of flurbiprofen. Clin Pharmacol Ther 1988; 44: 225–231.

8. Beckett AH, Triggs EJ. Buccal absorption of basic drugs and its application as an in vivo model of passive drug transfer through lipid membranes. J. Pharm. Pharmacol 1967; 19: 31–41.

9. Berk SI, Beckman K, Hoon TJ, et al. Comparison of the pharmacokinetics and electrocardiographic effects of sublingual and intravenous verapamil. Pharmacotherapy 1992; 12 (1): 33-9.

10. Bogaert MG. Clinical pharmacokinetics of nitrates. Cardiovasc Drugs Ther 1994; 8: 693-9.

11. Ceschel GC, Maffei P, Sforzini A, Lombardi Borgia S, Yasin A, Ronchi C. In vitro permeation through porcine buccal mucosa of caffeic acid phenetyl ester (CAPE) from a topical mucoadhesive gel containing propolis. Fitoterapia 73 Suppl. 2002; 1: 44-52.

12. Chen S.Y., Squier C.A The ultrastructure of the oral epithelium. In: Meyer J, Squier CA, Gerson SJ (eds.) The Structure and Function of Oral Mucosa. Pergamon Press, Oxford, 1984: 7-30.

13. Czekalla J, Wagner T, Schacht A, Kluge M, Kinon B. Effectiveness and medication acceptance of olanzapine disintegrating tablets compared to standard olanzapine tablets in acutely treated psychiatric patients. Patient Prefer Adherence. 2007; 1: 19–27.

14. Dearden JC, Tomlinson E. Correction for effect of dilution on diffusion through a membrane. J Pharm Sci 1971; 60: 1278–1279.

15. Deneer VHM, Drese GB, Roemelé PEH, Verhoef JC, Lie-A-Huen L, Kingma JH, Brouwers JRBJ, Junginger HE. Buccal transport of flecainide and sotalol: Effect of a bile salt and ionization state. Int J Pharm 2002; 241: 127–134.

16. de Vries ME, Boddé HE, Verhoef JC, Ponec M, Crane WIHM, Junginger HE. Localization of the permeability barrier inside porcine buccal mucosa: A combined in vitro study of drug permeability, electrical resistance and tissue morphology. Int J Pharm 1991; 76: 25–35.

17. Farmacevticheskaja tehnologija. Tverdye lekarstvennye formy (Pharmaceutical technology. Solid dosage forms). Institute of Pharmaceutical Technologies Publ., 2011, 662 p.

18. Fort S, Lewis MJ, Luscombe DK, et al. Preliminary investigation of the efficacy of sublingual verapamil in the management of acute atrial fibrillation and flutter. Br J Clin Pharmacol 1994; 37: 460-3.

19. Fukui-Soubou M, Terashima Hi, Kawashima K, Utsunomiya O, Terada T. Efficacy, Safety, and Palatability of RACTAB® Formulation Amlodipine Orally Disintegrating Tablets. Drugs R D. 2011 Dec; 11(4): 327–336.

20. Gandhi, B.R., and Robinson, R.J. Oral cavity as a site for bioadhesive drug delivery. Adv. Drug Deliv. Rev 1994; 13: 43−74.

21. Ghosh T.K., Pfister W.R. Drug Delivery to the Oral Cavity. Taylor & Francis. 2005; 414 p.

22. Green R, Hicks RW. Orally disintegrating vardenafil tablets for the treatment of erectile dysfunction: efficacy, safety, and patient acceptability. Patient Prefer Adherence. 2011; 5: 181–185.

23. Hansen LB, Christrup LL, Bundgaard H. Enhanced delivery of ketobemidone through porcine buccal mucosa in vitro via more lipophilic ester prodrugs. Int J Pharm 1992; 88: 237–242.

24. Hayward AF. Ingestion of colloid in a keratinized epithelium and its localization in membrane-coating granules. J Anat 1976; 121: 313–321.

25. Hoogstraate AJ, Boddé HE. Methods for assessing the buccal mucosa as a route of drug delivery. Adv Drug Del Rev 1993; 12: 99–125.

26. Hoogstraate AJ, Cullander C, Nagelkerke JF, Senel S, Verhoef JC, Junginger HE, Boddé HE. Diffusion rates and transport pathways of fluorescein isothiocyanate (FITC)-labeled model compounds through buccal epithelium. Pharm Res 1994; 11: 83–89.

27. Hoogstraate AJ, Senel S, Cullander C, Verhoef J, Junginger HE, Boddé HE. Effects of bile salts on transport rates and routes of FITC-labelled compounds across porcine buccal epithelium in vitro. J Control Release 1996; 40: 211–221.

28. http://www.fda.gov/

29. http://www.accessdata.fda.gov/scripts/cder/ob/default.cfm

30. https://www.drugs.com/

31. http://www.ema.europa.eu/ema/

32. http://grls.rosminzdrav.ru/Default.aspx

33. Irfan M, Rabel S, Bukhtar Q, Qadir MI, Jabeen F, Khand A. Orally disintegrating films: A modern expansion in drug delivery system. Saudi Pharm J. 2016; 24(5): 537–546.

34. Jacobsen J, Pedersen M, Rassing MR. TR146 cells as a model for human buccal epithelium: II. Optimisation and use of a cellular sensitivity MTS/PMS assay. Int J Pharm 1996; 141: 217–225.

35. John DN, Fort S, Lewis MJ, et al. Pharmacokinetics and pharmacodynamics of verapamil following sublingual and oral administration to healthy volunteers. Br J Clin Pharmacol 1992; 33: 623-7.

36. Keny RV, Desouza C, Lourenco CF. Formulation and Evaluation of Rizatriptan Benzoate Mouth Disintegrating Tablets. Indian J Pharm Sci. 2010; 72(1): 79–85.

37. Khalikova E.R., Maslova M.N., Zabolotnaya P.G., Kozlova Zh.M. Vybor sposoba granulyatsii dlya sozdaniya rastvorimykh tabletok uskorennogo vysvobozhdeniya. Materialy 6-y Mezhdunarodnoy nauchno-metodicheskoy konferentsii «Farmobrazovanie-2016» (The choice of granulation method to create soluble fast release tablets. Materials of the 6th International Scientific and Methodological Conference “Pharmaceutical Education-2016”), 2016, pp. 576-579.

38. Khan S, Kataria P, Nakhat P, Yeole P. Taste masking of ondansetron hydrochloride by polymer carrier system and formulation of rapid-disintegrating tablets. AAPS PharmSciTech. 2007; 8(2): 127–133.

39. Kirsten R, Nelson K,KirstenD, et al. Clinical pharmacokinetics of vasodilators. Part II. Clin Pharmacokinet 1998; 35 (1): 9-36.

40. Kozlova Zh.M., Pchelintsev S.O., Khalikova E.R., Zabolotnaya P.G., Maslova M.N., Kim G.A. Ispol'zovanie sovremennykh kombinirovannykh vspomogatel'nykh veshchestv dlya polucheniya tabletok, dispergiruemykh v rotovoy polosti, metodom pryamogo pressovaniya (The use of modern combined excipients to obtain tablets dispersible in the oral cavity by direct compression). Razrabotka i registratsiya lekarstvennykh sredstv – Drug development & registration, 2016, no. 2 (15), pp. 46-50

41. Kozlova Zh.M., Zabolotnaya P.G., Maslova M.N. Bystrodispergiruemye oral'nye sistemy dostavki. Novaya nauka: ot idei k rezul'tatu. Sbornik statey Mezhdunarodnoy nauchnoprakticheskoy konferentsii (Fast dissolving oral delivery systems. New science: from idea to result. Collection of articles of the International scientific-practical conference), 2015, pp. 75-77

42. Kurosaki Y, Yano K, Kimura T. Perfusion cells for studying regional variation in oral-mucosal permeability in humans. I: Kinetic aspects in oral-mucosal absorption of alkylparabens. Pharm Res 1997; 14: 1241–1245.

43. Kurosaki Y, Yano K, Kimura T. Perfusion cells for studying regional variation in oral mucosal permeability in humans. 2. A specialized transport mechanism in D-glucose absorption exists in dorsum of tongue. J Pharm Sci 1998; 87: 613–615.

44. Lee J, Kellaway IW. Combined effect of oleic acid and polyethylene glycol 200 on buccal permeation of [D-ala2, D-leu5]enkephalin from a cubic phase of glyceryl monooleate. Int J Pharm 2000; 204: 137–144.

45. Leonova M.V. New dosage forms and drug delivery systems: features of oral dosage forms. Part 1. Lechebnoe delo – General Medicine, 2009; no.2, pp. 21-31

46. Liew KB, Fung Tan YT, Peh KK. Characterization of Oral Disintegrating Film Containing Donepezil for Alzheimer Disease. AAPS PharmSciTech. 2012; 13(1): 134–142.

47. Law S, Wertz PW, Swartzendruber DC, Squier CA. Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy. Arch Oral Biol, 1995; 40: 1085–1091.

48. McElnay JC, Al-Furaih TA, Hughes CM, et al. The effect of pH on the buccal and sublingual absorption of captopril. Eur J Clin Pharmacol 1995; 48: 373-9.

49. McElnay JC. Buccal absorption of drugs. In: Swarbrick J, Boylan JC (eds.) Encyclopedia of Pharmaceutical Technology. Marcel Dekker, 1990; New York, pp 189–211.

50. Montgomery W, Treuer T, Karagianis J, Ascher-Svanum H, Harrison G. Orally disintegrating olanzapine review: effectiveness, patient preference, adherence, and other properties. Patient Prefer Adherence. 2012; 6: 109–125.

51. Narang N, Sharma J. Sublingual mucosa as a route for systemic drug delivery. International Journal of Pharmacy and Pharmaceutical Sciences, 2011; 3 (2): 18-22.

52. Nicolazzo JA, Reed BL, Finnin BC. Assessment of the effects of sodium dodecyl sulfate on the buccal permeability of caffeine and estradiol. J Pharm Sci 2004; 93: 431–440.

53. Nicolazzo JA, Reed BL, Finnin BC. Enhanced buccal mucosal retention and reduced buccal permeability of estradiol in the presence of padimate O and Azone® —a mechanistic study. J Pharm Sci 2005; 94: 873–882.

54. Nicolazzo JA, Reed BL, Finnin BC. Enhancing the buccal mucosal uptake and retention of triamcinolone acetonide. J Control Release 2005; 105: 240–248.

55. Nicolazzo JA, Reed BL, Finnin BC. Modification of buccal drug delivery following pretreatment with skin penetration enhancers. J Pharm Sci 2004; 93: 2054–2063.

56. Nicolazzo JA, Reed BL, Finnin BC. The effect of various in vitro conditions on the permeability characteristics of the buccal mucosa. J Pharm Sci 2003; 92: 2399–2410.

57. Nielsen HM, Rassing MR. Nicotine permeability across the buccal TR146 cell culture model and porcine buccal mucosa in vitro: Effect of pH and concentration. Eur J Pharm Sci 2002; 16: 151–157.

58. Oh CK, Ritschel WA. Biopharmaceutic aspects of buccal absorption of insulin. Methods Find Exp Clin Pharmacol 1990; 12: 205–212.

59. Parkash V, Maan S. Fast disintegrating tablets: Opportunity in drug delivery system J Adv Pharm Technol Res 2011; 2(4): 223–235.

60. Preis M. Orally Disintegrating Films and Mini-Tablets—Innovative Dosage Forms of Choice for Pediatric Use. AAPS Pharm Sci Tech 2015; 16(2): 234–241.

61. Rathbone MJ, Drummond BK, Tucker IG. The oral cavity as a site for systemic drug delivery. Adv Drug Del Rev 1994; 13: 1–22.

62. Rathbone MJ. Human buccal absorption. I. A method for estimating the transfer kinetics of drugs across the human buccal membrane. Int J Pharm 1991; 69: 103–108.

63. Rathbone MJ. Human buccal absorption. II. A comparative study of the buccal absorption of some parahydroxybenzoic acid derivatives using the buccal absorption test and a buccal perfusion cell. Int J Pharm 1991; 74:189–194.

64. Sasaki S, Koumi S, Sato R, et al. Kinetics of buccal absorption of propafenone single oral loading dose in healthy humans. Gen Pharmacol 1998; 31 (4): 589-91.

65. Schürmann W, Turner P/ Membrane model of the human oral mucosa as derived from buccal absorption performance and physicochemical properties of the beta-blocking drugs atenolol and propranolol. J Pharm Pharmacol 1978; 30: 137–147.

66. Selvaratnam L, Cruchley AT, Navsaria H, Wertz PW, Hagi-Pavli EP, Leigh IM, Squier CA, Williams DM. Permeability barrier properties of oral keratinocyte cultures: A model of intact human oral mucosa. Oral Dis 2001; 7: 252–258.

67. Senel S, Capan Y, Sargon MF, Ikinci G, Solpan D, Güven O, Boddé HE, Hincal AA. Enhancement of transbuccal permeation of morphine sulfate by sodium glycodeoxycholate in vitro. J Control Release 1997; 45: 153–162.

68. Senel S, Duchкne D, Hincal AA, Capan Y, Ponchel G. In vitro studies on enhancing effect of sodium glycocholate on transbuccal permeation of morphine hydrochloride. J Control Release 1998; 51: 107–113.

69. Senel, S, Hincal AA. Drug permeation enhancement via buccal route: Possibilities and limitations. J. Control. Release 2001; 72(1-3): 133−144.

70. Senel S, Hoogstraate AJ, Spies F, Verhoef JC, Bos-van Geest A, Junginger HE, Boddé HE. Enhancement of in vitro permeability of porcine buccal mucosa by bile salts: Kinetic and histological studies. J Control Release 1994; 32: 45–56.

71. Shapero G, Dowson A, Lacoste JP, Almqvist P. Improved migraine management in primary care: results of a patient treatment experience study using zolmitriptan orally disintegrating tablet. Int J Clin Pract. 2006; 60(12): 1530–1535.

72. Shevchenko A.M., Kovalevskaya E.G. Tekhnologicheskie osobennosti razrabotki sostava i sposobov proizvodstva orodispersnykh lekarstvennykh form (Technological features of the composition development and methods of production of orally disintegrating dosage forms). Razrabotka i registratsiya lekarstvennykh sredstv – Drug development & registration, 2014, no. 6, pp. 30-34

73. Shojaie AH. Buccal mucosa as a route for systemic drug delivery: A review. J Pharm Pharm Sci 1998; 1(1): 15‐30.

74. Siegel IA, Hall SH, Stambaugh R. Permeability of the oral mucosa. In: Squier CA, Meyer J (eds.) Current Concepts of the Histology of Oral Mucosa 1971; pp 274–286.

75. Squier CA. Membrane coating granules in nonkeratinizing oral epithelium. J Ultrastruct Res 1977; 60: 212–220.

76. Squier CA, Hall BK. The permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier. J Invest Dermatol 1985; 84: 176–179.

77. Squier CA, Kremer M, Wertz PW. Continuous flow mucosal cells for measuring the in-vitro permeability of small tissue samples. J Pharm Sci 1997; 86: 82–84.

78. Squier C.A., Wertz P.W. Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone MJ (ed.), Oral Mucosal Drug Delivery. Marcel Dekker, New York, 1996: 1-26.

79. Swartzendruber DC. Studies of epidermal lipids using electron microscopy. Semin Dermatol 1992; 11: 157–161.

80. Terapevticheskaya stomatologiya (Therapeutic dentistry), Moscow, GEOTAR-Media Publ., 2005, Part 3, 288 p.

81. Tucker IG. A method to study the kinetics of oral mucosal drug absorption from solutions. J Pharm Pharmacol 1988; 40: 679–683.

82. van der Bijl P, Gluckman HL, van Eyk AD, Thompson IOC. Permeability of lichen planus lesions and healthy buccal mucosa to water. SADJ 1998; 53: 493–496.

83. van der Bijl P, van Eyk AD, Thompson IOC. Effect of freezing on the permeability of human buccal and vaginal mucosa. S Afr J Sci 1998; 94: 499–502.

84. van der Bijl P, van Eyk AD, Thompson IO. Penetration of human vaginal and buccal mucosa by 4.4-kd and 12-kd fluorescein-isothiocyanate-labeled dextrans. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998; 85: 686–691.

85. van der Bijl P, van Eyk AD, Thompson IO. Permeation of 17β-estradiol through human vaginal and buccal mucosa. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998; 85: 393–398.

86. van der Bijl P, van Eyk AD, Thompson IO, Stander IA. Diffusion rates of vasopressin through human vaginal and buccal mucosa. Eur J Oral Sci 1998; 106: 958–962.

87. Veuillez F, Kalia YN, Jacques Y, Deshusses J, Buri P. Factors and strategies for improving buccal absorption of peptides. Eur. J. Pharm. Biopharm. 2001; 51(2): 93−109.

88. Wagner DS, Gauger V, Chiravuri D, Faust K. Ondansetron oral disintegrating tablets for the prevention of postoperative vomiting in children undergoing strabismus surgery. Ther Clin Risk Manag. 2007; 3(4): 691–694.

89. Wertz PW, Swartzendruber DC, Squier CA. Regional variation in the structure and permeability of oral mucosa and skin. Adv Drug Del Rev 1993; 12: 1–12.

90. Xia B, Yang Z, Zhou H, Lukacova V, Zhu W, Milewski M, Kesisoglou F. Development of a Novel Oral Cavity Compartmental Absorption and Transit Model for Sublingual Administration: Illustration with Zolpidem. AAPS J. 2015; 17(3): 631–642.

91. Xiang J, Fang X, Li X. Transbuccal delivery of 2_,3_-dideoxycytidine: In vitro permeation study and histological investigation. Int J Pharm 2002; 231: 57–66.

92. Yamahara H, Suzuki T, Mizobe M, Noda K, Samejima M. In situ perfusion system for oral mucosal absorption in dogs. J Pharm Sci 1990; 79: 963–967.

93. Zeng F, Wang L, Zhang W, Shi K, Zong L. Formulation and In Vivo Evaluation of Orally Disintegrating Tablets of Clozapine/Hydroxypropyl-β-cyclodextrin Inclusion Complexes. AAPS PharmSciTech. 2013; 14(2): 854–860.

94. Zhao J, Ou J, Xue H, Liu L, Montgomery W, Treuer T. Clinical utility of orally disintegrating olanzapine in Chinese patients with schizophrenia: a review of effectiveness, patient preference, adherence, and other properties. Neuropsychiatr Dis Treat. 2014; 10: 355–359.

95. Zhang H, Zhang J, Streisand JB. Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications. Clin. Pharmacokinet. 2002;41(9): 661680.

96. Zhang, H, Robinson, RJ. Routes of Drug Transport across Oral Mucosa in Oral Mucosal Drug Delivery. 1996; New York: Marcel Dekker.

97. Zhang J, Niu S, Maland LJ, Barrus BK, Freimann VR, Hague BI. Buccal permeability of oral transmucosal fentanyl citrate (OTFCTM) in a dog model. Pharm Res 1991; 8: S–155.

98. Zhang J, Niu S, McJames S, Stanley T. Buccal absorption of insulin in an in vivo dog model—evidence of mucosal storage. Pharm Res 1991; 8: S–155.

Несмотря на преимущества перорального пути введения, всегда существовали его недостатки, а именно уменьшение терапевтических концентраций лекарственных веществ за счет пищеварительных ферментов, моторики желудочно-кишечного тракта (ЖКТ), эффекта первого прохождения через цепь печеночных ферментов, осуществление постабсорбционного оттока, опосредованного Р-гликопротеином [1, 2]. Преодоление вышеперечисленных недостатков стало возможным за счет появления на фармацевтическом рынке таблеток и капсул, покрытых кишечнорастворимыми оболочками, многослойных, флотирующих, матричных и других систем доставки [3]. В последние десятилетия предпочтение отдается интраоральному пути введения и, следовательно, разработкам лекарственных форм, всасывание лекарственных веществ из которых происходит уже в ротовой полости, минуя цепь печеночных ферментов [4, 5]. Одной из таких форм являются быстродиспергируемые оральные системы доставки (БДОСД), представляющие собой оральные системы, растворяющиеся или распадающиеся в течение нескольких секунд или десятков секунд после помещения в ротовую полость [1, 6–8]. При этом лекарственное вещество попадает непосредственно в кровоток через вентральную поверхность языка и нижнюю поверхность рта, что обеспечивает высокую абсорбцию, которая от 3 до 10 раз больше, чем при пероральном приеме [9]. Интраоральный путь введения является одним из наиболее предпочтительных способов введения лекарственных веществ, так как характеризуется значительным удобством, а для определенных лекарственных препаратов может обеспечить более быстрое начало действия [10]. Данная система доставки подходит для пациентов, имеющих проблемы проглатывания таблеток, капсул и жидкостей: детям, пожилым, обездвиженным больным, а также пациентам, страдающим онкологическими, психическими, аллергическими и иными заболеваниями [9, 10].

Подобно коже, слизистая оболочка ротовой полости выполняет роль барьера для поглощения ксенобиотиков и обладает относительной устойчивостью к внедрению инфекций. Данное свойство слизистой оболочки обусловлено морфологическими особенностями ее строения [11]. В зависимости от анатомического расположения в полости рта слизистые ткани подразделяются следующим образом: жевательная (твердое нёбо, десна), выстилающая (щека, губа, дно полости рта, нижняя поверхность языка, мягкое нёбо) и специализированная (дорсальная поверхность языка) [12, 13].

Для Цитирования:
, Иван Иванович Краснюк — профессор, , , Особенности фармакокинетики лекарственных средств, применяемых в виде быстродиспергируемых оральных систем доставки. Фармацевтическое дело и технология лекарств. 2020;1.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: