По всем вопросам звоните:

+7 495 274-22-22

УДК: 616.98 DOI:10.33920/med-08-2112-01

Механизмы и пути передачи коронавирусной инфекции SARS-CoV-2

Каира Алла Николаевна д-р мед. наук, ведущий научный сотрудник, ФГБНУ «Научно-исследовательский институт вакцин и сывороток имени И.И. Мечникова», профессор кафедры эпидемиологии Российской медицинской академии непрерывного последипломного образования, 105064, г. Москва, Малый Казенный пер., д. 5а, e-mail: allakaira@inbox.ru, https://orcid.org/0000-0002-9378-6414
Политова Нина Григорьевна канд. мед. наук, преподаватель кафедры эпидемиологии, ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, 125993, г. Москва, ул. Баррикадная, д. 2/1, стр. 1, e-mail: epidrmapo@mail.ru, https://orcid.org/0000-0002-4825-0477
Свитич Оксана Анатольевна член-корр. РАН, д-р мед. наук, профессор РАН, директор, ФГБНУ «Научно-исследовательский институт вакцин и сывороток имени И.И. Мечникова», 105064, г. Москва, Малый Казенный пер., д. 5а, e-mail: mech.inst@mail.ru, https://orcid.org/0000-0003-1757-8389

Актуальность проблемы. Новая коронавирусная инфекция, вызванная вирусом SARS-CoV-2, создала чрезвычайную ситуацию международного значения. Заболеваемость ею характеризуется стремительным распространением по всем странам, высокими показателями заболеваемости, тяжелыми осложнениями и летальностью. Несмотря на то что в настоящее время есть вакцины, остановить инфекцию пока не представляется возможным. Особое значение в качестве профилактической меры является воздействие на второе звено эпидемического процесса. В связи с чем получение объективных данных о механизмах и путях распространения вируса SARS-CoV-2 позволит более рационально проводить профилактические мероприятия и значительно уменьшить риск передачи инфекции. Цель — проанализировать по доступным литературным источникам современные данные о механизмах и путях распространения возбудителя COVID-19 и рассмотреть возможные мероприятия по воздействию на второе звено эпидемиологической цепочки с целью снижения рисков инфицирования. Материалы и методы. Проведен отбор рецензируемой литературы, опубликованной с 2019 по 2021 г. в базе данных PubMed и e-Library.ru, а также по ссылкам в статьях. Для получения статистических данных использовались интернет-ресурсы Всемирной организации здравоохранения (ВОЗ), открытые данные Роспотребнадзора, Министерства здравоохранения РФ, Росстата. Результаты. Анализ научных источников, содержащих информацию о механизмах и путях передачи новой коронавирусной инфекции COVID-19, свидетельствует, что авторы в своих публикациях упоминают практически о всех механизмах и путях передачи этого заболевания, но в разной степени их значимости. Основным механизмом распространения вируса SARS-CoV-2 является аспирационный с воздушно-капельным и воздушно-пылевым путями передачи. Вместе с тем не исключается действие контактного, фекально-орального механизмов, изучается вероятность реализации вертикального механизма передачи возбудителя от матери ребенку, а также полового пути. Важной мерой профилактики новой инфекции является воздействие на второе звено эпидемического процесса, особенно обеспечение высокоэффективной работы систем вентиляции и кондиционирования в лечебных учреждениях и общественных местах с массовым скоплением людей, а также соблюдением личных профилактических мер и проведение дезинфекционных мероприятий.

Литература:

1. Operational planning guidance to support country preparedness and response. Geneva: World Health Organization; 2020 (Available at: https://www.who.int/publications/i/item/draft-operational-planning-guidance-for-un-country-teams).

2. Triggle C.R., Bansal D., Ding, H., Islam, M. M., Farag, E., Hadi, H. A., & Sultan, A. A. (2021). A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Frontiersinimmunology, 12, 631139. https://doi.org/10.3389/fimmu.2021.631139.

3. Cao, Y., Shao, L., Jones, T., Oliveira, M., Ge, S., Feng, X., Silva, L., &BéruBé, K. (2021). Multiple relationships between aerosol and COVID-19: A framework for global studies. Gondwana research: international geoscience journal, 93, 243–251. https://doi.org/10.1016/j.gr.2021.02.002.

4. Liu, L., Zhang, J., Du, R., Teng, X., Hu, R., Yuan, Q., et al. (2021). Chemistry of atmospheric fine particles during the COVID-19 pandemic in a megacity of Eastern China. Geophysical Research Letters, 48, e2020GL091611. https://doi.org/10.1029/2020GL091611.

5. Jayaweera, M., Perera, H., Gunawardana, B., &Manatunge, J. (2020). Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environmentalresearch, 188, 109819. https://doi.org/10.1016/j.envres.2020.109819.

6. Wei, J., & Li, Y. (2016). Airborne spread of infectious agents in the indoor environment. American journal of infection control, 44 (9 Suppl), S102 — S108. https://doi.org/10.1016/j.ajic.2016.06.003.

7. van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. The New England journal of medicine, 382 (16), 1564–1567. https://doi.org/10.1056/NEJMc2004973.

8. Lednicky, J. A., Lauzardo, M., Fan, Z. H., Jutla, A., Tilly, T. B., Gangwar, M., Usmani, M., Shankar, S. N., Mohamed, K., Eiguren-Fernandez, A., Stephenson, C. J., Alam, M. M., Elbadry, M. A., Loeb, J. C., Subramaniam, K., Waltzek, T. B., Cherabuddi, K., Morris, J. G., Jr, & Wu, C. Y. (2020). Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases, 100, 476–482. https://doi.org/10.1016/j.ijid.2020.09.025.

9. Lednicky JA, Tagliamonte MS, White SK, Elbadry MA, Alam MM, Stephenson CJ, Bonny TS, Loeb JC, Telisma T, Chavannes S, Ostrov DA, Mavian C, De Rochars VMB, Salemi M, Morris JG. Emergence of porcine delta-coronavirus pathogenic infections among children in Haiti through independent zoonoses and convergent evolution. medRxiv [Preprint]. 2021 Mar 25:2021.03.19.21253391. doi: 10.1101/2021.03.19.21253391.

10. Nissen, K., Krambrich, J., Akaberi, D., Hoffman, T., Ling, J., Lundkvist, Å., Svensson, L., &Salaneck, E. (2020). Long-distance airborne dispersal of SARS-CoV-2 in COVID-19 wards. Scientificreports, 10 (1), 19589. https:// doi.org/10.1038/s41598-020-76442-2.

11. Santarpia, J. L., Rivera, D. N., Herrera, V. L. et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep.10, 12732 (2020). https://doi.org/10.1038/s41598-020-69286-3.

12. Asadi, Sima& Bouvier, Nicole & Wexler, Anthony &Ristenpart, William. (2020). The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Science and Technology. 1–4. https://doi.org/10.1080/02786826.2020.1749229.

13. Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, Borelli M, Palmisani J, Di Gilio A, Piscitelli P, Miani A. Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. Int J Environ Res Public Health. 2020 Apr 23; 17 (8): 2932. doi: 10.3390/ijerph17082932.

14. Drossinos, Yannis &Stilianakis, Nikolaos. (2020). What aerosol physics tells us about airborne pathogen transmission. Aerosol Science and Technology. 54; 1–5. doi: 10.1080/02786826.2020.1751055.

15. Martin Z. Bazant, John W.M. Bush Proceedings of the National Academy of Sciences Apr 2021, 118 (17) e2018995118; DOI: 10.1073/pnas.2018995118.

16. Lewis D. Superspreading drives the COVID pandemic — and could help to tame it. Nature. 2021 Feb; 590 (7847): 544–546. DOI: 10.1038/d41586-021-00460-x. PMID: 33623168.

17. Trisha Greenhalgh, Jose L Jimenez, Kimberly A Prather, Zeynep Tufekci, David Fisman, Robert Schooley. Published: April 15, 2021. Vol. 397, Issue 10285, p. 1603–1605, May 01, 2021. DOI: https://doi.org/10.1016/ S0140–6736 (21) 00869–2.

18. Wei, W. E., Li, Z., Chiew, C. J., Yong, S. E., Toh, M. P. and Lee, V. J. (2020) Presymptomatic Transmission of SARSCoV-2 Singapore, January 23-March 16, 2020. Morbidity and Mortality Weekly Report, 69, 411. https://doi.org/10.15585/mmwr.mm6914e1.

19. Eichler N, Thornley C, Swadi T, Devine T, McElnay C, Sherwood J, Brunton C, Williamson F, Freeman J, Berger S, Ren X, Storey M, de Ligt J, Geoghegan JL. Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 during Border Quarantine and Air Travel, New Zealand (Aotearoa). Emerg Infect Dis. 2021 May; 27 (5): 1274–1278. DOI: 10.3201/eid2705.210514. Epub 2021 Mar 18.

20. Du W, Yu J, Liu X, Chen H, Lin L, Li Q. Persistence of SARS-CoV-2 virus RNA in feces: A case series of children. J Infect Public Health. 2020 Jul; 13 (7): 926–931. DOI: 10.1016/j.jiph.2020.05.025. Epub 2020 Jun 7. PMID: 32546439; PMCID: PMC7275988.

21. Azuma K, Yanagi U, Kagi N, Kim H, Ogata M, Hayashi M. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ Health Prev Med. 2020 Nov 3; 25 (1): 66. DOI: 10.1186/s12199-020-00904-2.

22. Оng SWX, Tan YK, Coleman KK, Tan BH, Leo YS, Wang DL, Ng CG, Ng OT, Wong MSY, Marimuthu K. Lack of viable severe acute respiratory coronavirus virus 2 (SARS-CoV-2) among PCR-positive air samples from hospital rooms and community isolation facilities. Infect Control Hosp Epidemiol. 2021 Jan 25:1–6. DOI: 10.1017/ice.2021.8. Epub ahead of print.

23. Moreno T, Pintó RM, Bosch A, Moreno N, Alastuey A, Minguillón MC, Anfruns-Estrada E, Guix S, Fuentes C, Buonanno G, Stabile L, Morawska L, Querol X. Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. Environ Int. 2021 Feb; 147: 106326. DOI: 10.1016/j.envint.2020.106326. Epub 2020 Dec 9. PMID: 33340987; PMCID: PMC7723781.

24. Kwon KS, Park JI, Park YJ, Jung DM, Ryu KW, Lee JH. Evidence of Long-Distance Droplet Transmission of SARS-CoV-2 by Direct Air Flow in a Restaurant in Korea. J Korean Med Sci. 2020 Nov 30; 35 (46): e415. DOI: 10.3346/jkms.2020.35.e415. Erratum in: J Korean Med Sci. 2021 Jan 11; 36 (2): e23.

25. Santarpia, J. L., Rivera, D. N., Herrera, V. L. еt al. Аэрозольное и поверхностное загрязнение SARS-CoV-2, наблюдаемое в условиях карантина и изоляции. Sci Rep.10, 12732 (2020). Available at: https://doi.org/10.1038/s41598-020-69286-3.

26. Wu S, Wang Y, Jin X, Tian J, Liu J, Mao Y. Environmental contamination by SARS-CoV-2 in a designated hospital for coronavirus disease 2019. Am J Infect Control. 2020 Aug; 48 (8): 910–914. DOI: 10.1016/j. ajic.2020.05.003. Epub 2020 May 12. PMID: 32407826; PMCID: PMC7214329.

27. Aboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. TransboundEmerg Dis. 2021 Mar; 68 (2): 296–312. DOI: 10.1111/tbed.13707. Epub 2020 Jul 14. PMID: 32603505; PMCID: PMC7361302.

28. Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, Marimuthu K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA. 2020 Apr 28; 323 (16): 1610–1612. DOI: 10.1001/jama.2020.3227.

29. Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, de Wit E, Munster VJ. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl. J Med. 2020 Apr 16; 382 (16): 1564–1567. DOI: 10.1056/ NEJMc2004973. Epub. 2020 Mar 17.

30. Chin, A.W. H., Chu, J.T. S., Perera, M.R. A., Hui, K.P. Y., Yen, H.-L., Chan, M.C. W., Peiris, M. and Poon, L. L. M. (2020) Stability of SARS-CoV-2 in Different Environmental Conditions. The Lancet: Microbe, 1, E10. https:// doi.org/10.1016/S2666–5247 (20) 30003–3.

31. Hirose R, Ikegaya H, Naito Y, Watanabe N, Yoshida T, Bandou R, Daidoji T, Itoh Y, Nakaya T. Survival of SARS-CoV-2 and influenza virus on the human skin: Importance of hand hygiene in COVID-19. Clin Infect Dis. 2020 Oct 3: ciaa1517. DOI: 10.1093/cid/ciaa1517. Epub ahead of print. PMID: 33009907; PMCID: PMC7665347.

32. Ma, D., Chen, CB., Jhanji, V. et al. Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea. Eye 34, 1212–1219 (2020). https://doi. org/10.1038/s41433-020-0939-4.

33. Xie, C., Zhao, H., Li, K. et al. The evidence of indirect transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health 20, 1202 (2020). https://doi.org/10.1186/s12889-020-09296-y.

34. Shi, Y., Wang, G., Cai, Xp. et al. An overview of COVID-19. J. Zhejiang Univ.Sci. B21, 343–360 (2020). https:// doi.org/10.1631/jzus.B2000083.

35. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., J.’a Xia, Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 10223: 507–513. DOI: 10.1016/S0140–6736 (20) 30211–7.

36. C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395:497–506. DOI: 10.1016/S0140–6736 (20) 30183–5.

37. Tian Y.; Rong L.; Nian W.; He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment. Pharmacol. Ther. 2020, 51 (9), 843–8.

38. Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Shen, H., Qiu, L., Li, Z., Geng, J., Cai, J., Han, H., Li, X., Kang, W., Weng, D., Liang, P. and Jiang, S. (2004), Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J. Pathol., 203: 622–630. Available at: https://doi.org/10.1002/path.1560] 51. 10.1111/apt.15731.

39. Zhang, Yong & Chen, Cao & Zhu, Shuangli& Shu, Chang & Wang, Dongyan& Song, Jingdong& Song, Yang & Zhen, Wei & Feng, Zijian& Wu, Guizhen& Xu, Jun & Xu, Wenbo. (2020). Isolation of 2019-nCoV from a Stool Specimen of a Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19). China CDC Weekly. 2. 123–124. 10.46234/ccdcw2020.033.

40. Zhang Y, Chen C, Song Y, Zhu S, Wang D, Zhang H, Han G, Weng Y, Xu J, Xu J, Yu P, Jiang W, Yang X, Lang Z, Yan D, Wang Y, Song J, Gao GF, Wu G, Xu W. Excretion of SARS-CoV-2 through faecal specimens. Emerg Microbes Infect. 2020 Dec; 9 (1): 2501–2508. DOI: 10.1080/22221751.2020.1844551.

41. Xing Y., Ni W., Wu Q., Li W., Li G., Tong J., Song X., Xing Q. 2020. Prolonged Presence of SARS-CoV-2 in Feces of Pediatric Patients During the Convalescent Phase.

42. Zhang T. Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. J.Med. Virol. 2020. P. 909–914. DOI: 10.1002/jmv.25795.

43. Cheung S.K., Hung I. F. N., Chan P.P. Y., Lung K.C., Tso E., Liu R., Ng Y.Y. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology. 2020 doi: 10.1053/j.gastro. 2020.03.065.

44. Sun J, Zhu A, Li H, Zheng K, Zhuang Z, Chen Z, et al. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerg Microbes Infect. 2020; 9: 991–3.

45. Xu Y. et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020; 26, 4: 502–505. DOI: 10.1038/s 41591-020-0817-4.

46. Wang D., Hu B., Hu C. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus — infected pneumonia in Wuhan, China. JAMA. 2020. DOI: 10.1001/jama.2020.1585.

47. Zhang J., Wang S., Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J.Med. Virol. 2020; 92 (6): 680–682. DOI: 10.1002/jmv.25742.

48. Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, Diamond MS, Ciorba MA, Whelan SPJ, Ding S. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020 May 13; 5 (47): eabc3582. DOI: 10.1126/ sciimmunol.abc3582. PMID: 32404436; PMCID: PMC7285829.

49. Mallapaty S. How sewage could reveal true scale of coronavirus outbreak. Nature. 2020; 580 (7802): 176– 177.

50. Medema G., Heijnen L., Elsinga G., Italiaander R. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ Sci Technol Lett. 2020; 7: 511–516.

51. Orive G., Lertxundi U., Barcelo D. Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. Sci. Total Environ. 2020: 139298.

52. Arslan M, Xu B, Gamal El-Din M. Transmission of SARS-CoV-2 via fecal-oral and aerosols-borne routes: Environmental dynamics and implications for wastewater management in underprivileged societies. Sci Total Environ. 2020; 743: 140709. DOI: 10.1016/j. scitotenv.2020.140709.

53. La Rosa G.; Mancini P.; Bonanno Ferraro G.; Veneri C.; Iaconelli M.; Bonadonna L.; Lucentini L.; Suffredini E. SARS-CoV-2 has been circulating in northern Italy since December 2019: Evidence from environmental monitoring. Sci. Total Environ. 2021, 750, 141711.10.1016/j.scitotenv.2020.141711.

54. Gu J, Han B, Wang J. COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission. Gastroenterology. 2020 May; 158 (6): 1518–1519. DOI: 10.1053/j.gastro.2020.02.054. Epub 2020 Mar 3. PMID: 32142785; PMCID: PMC7130192.

55. Meyerowitz EA, Richterman A, Gandhi RT, Sax PE. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Ann Intern Med. 2021 Jan; 174 (1): 69–79. DOI: 10.7326/M20–5008. Epub 2020 Sep 17. PMID: 32941052; PMCID: PMC7505025.

56. Chang, Le & Zhao, Lei & Gong, Huafei& Wang, Lunan& Wang, Lan. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 RNA Detected in Blood Donations. Emerging infectious diseases. 26. 10.3201/ eid2607.200839.

57. Andersson MI, Arancibia-Carcamo CV, Auckland K, Baillie JK, Barnes E, Beneke T, Bibi S, Brooks T, Carroll M, Crook D, Dingle K, Dold C, Downs LO, Dunn L, Eyre DW, Gilbert Jaramillo J, Harvala H, Hoosdally S, Ijaz S, James T, James W, Jeffery K, Justice A, Klenerman P, Knight JC, Knight M, Liu X, Lumley SF, Matthews PC, McNaughton AL, Mentzer AJ, Mongkolsapaya J, Oakley S, Oliveira MS, Peto T, Ploeg RJ, Ratcliff J, Robbins MJ, Roberts DJ, Rudkin J, Russell RA, Screaton G, Semple MG, Skelly D, Simmonds P, Stoesser N, Turtle L, Wareing S, Zambon M. SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Res. 2020 Oct 12; 5: 181. DOI: 10.12688/wellcomeopenres.16002.2. PMID: 33283055; PMCID: PMC7689603.

58. American Association of Blood Banks. Update: impact of 2019 novel coronavirus and blood safety. Available at: https://www.aabb.org/docs/default-source/default-document-library/regulatory/impact-of-2019-novel-coronavirus-on-blood-donation.pdf.

59. Арутюнов Г.П., Козиолова Н.А., Тарловская Е.И., Арутюнов А. Г., Григорьева Н.Ю., Джунусбекова Г.А. и др. Согласованная позиция экспертов Евразийской ассоциации терапевтов по некоторым новым механизмам патогенеза COVID-19: фокус на гемостаз, вопросы гемотрансфузии и систему транспорта газов крови. Кардиология. 2020; 60 (5): 4–14.

60. Catherine A Hogan, Bryan A Stevens, Malaya K Sahoo, ChunHong Huang, Natasha Garamani, Saurabh Gombar, Fumiko Yamamoto, Kanagavel Murugesan, Jason Kurzer, James Zehnder, Benjamin A Pinsky, High Frequency of SARS-CoV-2 RNAemia and Association With Severe Disease, Clinical Infectious Diseases, Volume 72, Issue 9, 1 May 2021, Pages e291 — e295, https://doi.org/10.1093/cid/ciaa1054.

61. Patel K.P., Vunnam S.R., Patel P.A. et al. Transmission of SARS-CoV-2: an update of current lliterature. European Journal of Clinical Microbiology and Infectious Diseases. 2020. Vol. 39. No. 11. P. 20052011. DOI: 10.1007/s10096-020-03961-1.

62. Wang J., Hongbo Q., Bao L. et al. A contingency plan for the management of the 2019 novel coronavirus outbreak in neonatal intensive care units. The Lancet. Child & Adolescent Health. 2020. Vol. 4. No. 4. P. 258–259. DOI: 10.1016/S2352–4642 (20) 30040–7.

63. Zeng L, Xia S, Yuan W, Yan K, Xiao F, Shao J, Zhou W. Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatr. 2020 Jul 1; 174 (7): 722–725. DOI: 10.1001/jamapediatrics.2020.0878. PMID: 32215598; PMCID: PMC7099530.

64. Vivanti, A. J., Vauloup-Fellous, C., Prevot, S. et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun 11, 3572 (2020). https://doi.org/10.1038/s41467-020-17436-6.

65. Schwartz DA. An Analysis of 38 Pregnant Women With COVID-19, Their Newborn Infants, and MaternalFetal Transmission of SARS-CoV-2: Maternal Coronavirus Infections and Pregnancy Outcomes. Arch Pathol Lab Med. 2020 Jul 1; 144 (7): 799–805. DOI: 10.5858/arpa.2020–0901-SA. PMID: 32180426.

66. Menter T, Mertz KD, Jiang S, Chen H, Monod C, Tzankov A, Waldvogel S, Schulzke SM, Hösli I, Bruder E. Placental Pathology Findings during and after SARS-CoV-2 Infection: Features of Villitis and Malperfusion. Pathobiology. 2021; 88 (1): 69–77. DOI: 10.1159/000511324. Epub 2020 Sep 18. PMID: 32950981; PMCID: PMC7573905.

67. Baergen RN, Heller DS. Placental Pathology in COVID-19 Positive Mothers: Preliminary Findings. PediatrDevPathol. 2020 May-Jun; 23 (3): 177–180. DOI: 10.1177/1093526620925569. PMID: 32397896; PMCID: PMC7252218.

68. Kimberlin D. W, Stagno S. Can SARS-CoV-2 infection be acquired in utero? More definitive evidence is needed. JAMA. 2020. Vol. 323. No. 18. P. 1788–1789. DOI: 10.1001/jama.2020.4868.

69. Parazzini F., Bortolus R., Mauri P.A. et al. Delivery in pregnant women infected with SARS-CoV-2: a fastreview. International Journal of Gynaecology and Obstetrics. 2020. Vol. 150. No. 1. DOI: 10.1002/ijgo.13166.

70. Zamaniyan M., Ebadi A., Aghajanpoor Mir S. et al. Preterm delivery, maternal death, and vertical transmission in a pregnant woman with COVID-19 infection. Prenatal Diagnosis. 2020. Apr 17. DOI: 10.1002/ pd.5713.

71. Alzamora M.C., Paredes T., Caceres D. et al. Severe COVID-19 during pregnancy and possible vertical transmission. American Journal pf Perinatology 2020. Vol. 37. No. 8. P. 861–865. DOI: 10.1055/s-0040–1710050.

72. Baud D., Greub G., Favre G. et al. Second-trimester miscarriage in a pregnant woman with SARS-CoV-2 infection. JAMA. 2020. Vol. 323. No. 21. P. 21982200. DOI: 10.1001/jama.2020.7233.

73. Breastfeeding and COVID-19. Geneva: World Health Organization; 2020 (Available at: https://www.who.int/ news-room/commentaries/detail/breastfeeding-and-covid-19).

74. Pengfei Cui, Zhe Chen, Tian Wang, Jun Dai, Jinjin Zhang, Ting Ding, Jingjing Jiang, Jia Liu, Cong Zhang, Wanying Shan, Sheng Wang, Yueguang Rong, Jiang Chang, Xiaoping Miao, Xiangyi Ma, Shixuan Wang medRxiv 2020.02.26.20028225; DOI: https://doi.org/10.1101/2020.02.26.20028225.

75. Pan F, Xiao X, Guo J, Song Y, Li H, Patel DP, Spivak AM, Alukal JP, Zhang X, Xiong C, Li PS, Hotaling JM. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. FertilSteril. 2020 Jun; 113 (6): 1135–1139. DOI: 10.1016/j.fertnstert.2020.04.024. Epub 2020 Apr 17. PMID: 32482249; PMCID: PMC7164916.

76. Lewis D. Superspreading drives the COVID pandemic — and could help to tame it. Nature. 2021 Feb; 590 (7847): 544–546. DOI: 10.1038/d41586-021-00460-x. PMID: 33623168.

1. Operational planning guidance to support country preparedness and response. Geneva: World Health Organization; 2020 (Available at: https://www.who.int/publications/i/item/draft-operational-planning-guidance-for-un-country-teams).

2. Triggle C.R., Bansal D., Ding, H., Islam, M. M., Farag, E., Hadi, H. A., & Sultan, A. A. (2021). A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Frontiersinimmunology, 12, 631139. https://doi.org/10.3389/fimmu.2021.631139.

3. Cao, Y., Shao, L., Jones, T., Oliveira, M., Ge, S., Feng, X., Silva, L., &BéruBé, K. (2021). Multiple relationships between aerosol and COVID-19: A framework for global studies. Gondwana research: international geoscience journal, 93, 243–251. https://doi.org/10.1016/j.gr.2021.02.002.

4. Liu, L., Zhang, J., Du, R., Teng, X., Hu, R., Yuan, Q., et al. (2021). Chemistry of atmospheric fine particles during the COVID-19 pandemic in a megacity of Eastern China. Geophysical Research Letters, 48, e2020GL091611. https://doi.org/10.1029/2020GL091611.

5. Jayaweera, M., Perera, H., Gunawardana, B., &Manatunge, J. (2020). Transmission of COVID-19 virus by droplets and aerosols: A critical review on the unresolved dichotomy. Environmentalresearch, 188, 109819. https://doi.org/10.1016/j.envres.2020.109819.

6. Wei, J., & Li, Y. (2016). Airborne spread of infectious agents in the indoor environment. American journal of infection control, 44 (9 Suppl), S102 — S108. https://doi.org/10.1016/j.ajic.2016.06.003.

7. van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., Tamin, A., Harcourt, J. L., Thornburg, N. J., Gerber, S. I., Lloyd-Smith, J. O., de Wit, E., & Munster, V. J. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. The New England journal of medicine, 382 (16), 1564–1567. https://doi.org/10.1056/NEJMc2004973.

8. Lednicky, J. A., Lauzardo, M., Fan, Z. H., Jutla, A., Tilly, T. B., Gangwar, M., Usmani, M., Shankar, S. N., Mohamed, K., Eiguren-Fernandez, A., Stephenson, C. J., Alam, M. M., Elbadry, M. A., Loeb, J. C., Subramaniam, K., Waltzek, T. B., Cherabuddi, K., Morris, J. G., Jr, & Wu, C. Y. (2020). Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases, 100, 476–482. https://doi.org/10.1016/j.ijid.2020.09.025.

9. Lednicky JA, Tagliamonte MS, White SK, Elbadry MA, Alam MM, Stephenson CJ, Bonny TS, Loeb JC, Telisma T, Chavannes S, Ostrov DA, Mavian C, De Rochars VMB, Salemi M, Morris JG. Emergence of porcine delta-coronavirus pathogenic infections among children in Haiti through independent zoonoses and convergent evolution. medRxiv [Preprint]. 2021 Mar 25:2021.03.19.21253391. DOI: 10.1101/2021.03.19.21253391.

10. Nissen, K., Krambrich, J., Akaberi, D., Hoffman, T., Ling, J., Lundkvist, Å., Svensson, L., &Salaneck, E. (2020). Long-distance airborne dispersal of SARS-CoV-2 in COVID-19 wards. Scientificreports, 10 (1), 19589. https:// doi.org/10.1038/s41598-020-76442-2.

11. Santarpia, J. L., Rivera, D. N., Herrera, V. L. et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep.10, 12732 (2020). https://doi.org/10.1038/s41598-020-69286-3.

12. Asadi, Sima& Bouvier, Nicole & Wexler, Anthony &Ristenpart, William. (2020). The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Science and Technology. 1–4. https://doi.org/10.1080/02786826.2020.1749229.

13. Setti L, Passarini F, De Gennaro G, Barbieri P, Perrone MG, Borelli M, Palmisani J, Di Gilio A, Piscitelli P, Miani A. Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. Int J Environ Res Public Health. 2020 Apr 23; 17 (8): 2932. DOI: 10.3390/ ijerph17082932.

14. Drossinos, Yannis &Stilianakis, Nikolaos. (2020). What aerosol physics tells us about airborne pathogen transmission. Aerosol Science and Technology. 54; 1–5. DOI: 10.1080/02786826.2020.1751055.

15. Martin Z. Bazant, John W.M. Bush Proceedings of the National Academy of Sciences Apr 2021, 118 (17) e2018995118; DOI: 10.1073/pnas.2018995118.

16. Lewis D. Superspreading drives the COVID pandemic — and could help to tame it. Nature. 2021 Feb; 590 (7847): 544–546. DOI: 10.1038/d41586-021-00460-x. PMID: 33623168.

17. Trisha Greenhalgh, Jose L Jimenez, Kimberly A Prather, Zeynep Tufekci, David Fisman, Robert Schooley. Published: April 15, 2021. Vol. 397, Iss. 10285, P1603–1605, May 01, 2021. DOI: https://doi.org/10.1016/ S0140–6736 (21) 00869–2.

18. Wei, W. E., Li, Z., Chiew, C. J., Yong, S. E., Toh, M. P. and Lee, V. J. (2020) Presymptomatic Transmission of SARSCoV-2 Singapore, January 23-March 16, 2020. Morbidity and Mortality Weekly Report, 69, 411. https://doi. org/10.15585/mmwr.mm6914e1.

19. Eichler N, Thornley C, Swadi T, Devine T, McElnay C, Sherwood J, Brunton C, Williamson F, Freeman J, Berger S, Ren X, Storey M, de Ligt J, Geoghegan JL. Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 during Border Quarantine and Air Travel, New Zealand (Aotearoa). Emerg Infect Dis. 2021 May; 27 (5): 1274–1278. DOI: 10.3201/eid2705.210514. Epub 2021 Mar 18.

20. Du W, Yu J, Liu X, Chen H, Lin L, Li Q. Persistence of SARS-CoV-2 virus RNA in feces: A case series of children. J Infect Public Health. 2020 Jul; 13 (7): 926–931. DOI: 10.1016/j.jiph.2020.05.025. Epub 2020 Jun 7. PMID: 32546439; PMCID: PMC7275988.

21. Azuma K, Yanagi U, Kagi N, Kim H, Ogata M, Hayashi M. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ Health Prev Med. 2020 Nov 3; 25 (1): 66. DOI: 10.1186/s12199-020-00904-2.

22. Оng SWX, Tan YK, Coleman KK, Tan BH, Leo YS, Wang DL, Ng CG, Ng OT, Wong MSY, Marimuthu K. Lack of viable severe acute respiratory coronavirus virus 2 (SARS-CoV-2) among PCR-positive air samples from hospital rooms and community isolation facilities. Infect Control Hosp Epidemiol. 2021 Jan 25: 1–6. DOI: 10.1017/ice.2021.8. Epub ahead of print.

23. Moreno T, Pintó RM, Bosch A, Moreno N, Alastuey A, Minguillón MC, Anfruns-Estrada E, Guix S, Fuentes C, Buonanno G, Stabile L, Morawska L, Querol X. Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. Environ Int. 2021 Feb;147:106326. doi: 10.1016/j.envint.2020.106326. Epub 2020 Dec 9. PMID: 33340987; PMCID: PMC7723781.

24. Kwon KS, Park JI, Park YJ, Jung DM, Ryu KW, Lee JH. Evidence of Long-Distance Droplet Transmission of SARS-CoV-2 by Direct Air Flow in a Restaurant in Korea. J Korean Med Sci. 2020 Nov 30; 35 (46): e415. DOI: 10.3346/jkms.2020.35.e415. Erratum in: J Korean Med Sci. 2021 Jan 11; 36 (2): e23.

25. Santarpia, J. L., Rivera, D. N., Herrera, V. L. etal. Аэрозольное и поверхностное загрязнение SARS-CoV-2, наблюдаемое в условиях карантина и изоляции. Sci Rep.10, 12732 (2020). Availableat: https://doi.org/10.1038/s41598-020-69286-3.

26. Wu S, Wang Y, Jin X, Tian J, Liu J, Mao Y. Environmental contamination by SARS-CoV-2 in a designated hospital for coronavirus disease 2019. Am J Infect Control. 2020 Aug; 48 (8): 910–914. DOI: 10.1016/j. ajic.2020.05.003. Epub 2020 May 12. PMID: 32407826; PMCID: PMC7214329.

27. Aboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. TransboundEmerg Dis. 2021 Mar; 68 (2): 296–312. DOI: 10.1111/tbed.13707. Epub 2020 Jul 14. PMID: 32603505; PMCID: PMC7361302.

28. Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, Marimuthu K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA. 2020 Apr 28; 323 (16): 1610–1612. DOI: 10.1001/jama.2020.3227.

29. Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO, de Wit E, Munster VJ. Aerosol and Surface Stability of SARSCoV-2 as Compared with SARS-CoV-1. N Engl. J Med. 2020 Apr 16; 382 (16): 1564–1567. DOI: 10.1056/ NEJMc2004973. Epub. 2020 Mar 17.

30. Chin, A.W. H., Chu, J.T. S., Perera, M.R. A., Hui, K.P. Y., Yen, H.-L., Chan, M.C. W., Peiris, M. and Poon, L. L. M. (2020) Stability of SARS-CoV-2 in Different Environmental Conditions. The Lancet: Microbe, 1, E10. https:// doi.org/10.1016/S2666–5247 (20) 30003–3.

31. Hirose R, Ikegaya H, Naito Y, Watanabe N, Yoshida T, Bandou R, Daidoji T, Itoh Y, Nakaya T. Survival of SARSCoV-2 and influenza virus on the human skin: Importance of hand hygiene in COVID-19. Clin Infect Dis. 2020 Oct 3: ciaa1517. DOI: 10.1093/cid/ciaa1517. Epub ahead of print. PMID: 33009907; PMCID: PMC7665347.

32. Ma, D., Chen, CB., Jhanji, V. et al. Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea. Eye 34, 1212–1219 (2020). https://doi. org/10.1038/s41433-020-0939-4.

33. Xie, C., Zhao, H., Li, K. et al. The evidence of indirect transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health 20,1202 (2020). https://doi.org/10.1186/s12889-020-09296-y.

34. Shi, Y., Wang, G., Cai, Xp. et al. An overview of COVID-19. J. Zhejiang Univ.Sci. B21, 343–360 (2020). https:// doi.org/10.1631/jzus.B2000083.

35. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., J.’a Xia, Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 10223: 507–513. DOI: 10.1016/S0140–6736 (20) 30211–7.

36. C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497–506. DOI: 10.1016/S0140–6736 (20) 30183–5.

37. Tian Y.; Rong L.; Nian W.; He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment. Pharmacol. Ther. 2020, 51 (9): 843–8.

38. Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Shen, H., Qiu, L., Li, Z., Geng, J., Cai, J., Han, H., Li, X., Kang, W., Weng, D., Liang, P. and Jiang, S. (2004), Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J. Pathol., 203: 622–630. Available at: https://doi.org/10.1002/path.1560] 51. 10.1111/apt.15731.

39. Zhang, Yong & Chen, Cao & Zhu, Shuangli& Shu, Chang & Wang, Dongyan& Song, Jingdong& Song, Yang & Zhen, Wei & Feng, Zijian& Wu, Guizhen& Xu, Jun & Xu, Wenbo. (2020). Isolation of 2019-nCoV from a Stool Specimen of a Laboratory-Confirmed Case of the Coronavirus Disease 2019 (COVID-19). China CDC Weekly. 2. 123–124. 10.46234/ccdcw2020.033.

40. Zhang Y, Chen C, Song Y, Zhu S, Wang D, Zhang H, Han G, Weng Y, Xu J, Xu J, Yu P, Jiang W, Yang X, Lang Z, Yan D, Wang Y, Song J, Gao GF, Wu G, Xu W. Excretion of SARS-CoV-2 through faecal specimens. Emerg Microbes Infect. 2020 Dec; 9 (1): 2501–2508. DOI: 10.1080/22221751.2020.1844551.

41. Xing Y., Ni W., Wu Q., Li W., Li G., Tong J., Song X., Xing Q. 2020. Prolonged Presence of SARS-CoV-2 in Feces of Pediatric Patients During the Convalescent Phase.

42. Zhang T. Detectable SARS-CoV-2 viral RNA in feces of three children during recovery period of COVID-19 pneumonia. J.Med. Virol. 2020. P. 909–914. DOI: 10.1002/jmv.25795.

43. Cheung S.K., Hung I. F. N., Chan P.P. Y., Lung K.C., Tso E., Liu R., Ng Y.Y. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology. 2020. DOI: 10.1053/j.gastro. 2020.03.065.

44. Sun J, Zhu A, Li H, Zheng K, Zhuang Z, Chen Z, et al. Isolation of infectious SARS-CoV-2 from urine of a COVID-19 patient. Emerg Microbes Infect. 2020; 9: 991–3.

45. Xu Y. et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med. 2020; 26, 4: 502–505. DOI: 10.1038/ s 41591-020-0817-4.

46. Wang D., Hu B., Hu C. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus — infected pneumonia in Wuhan, China. JAMA. 2020. DOI: 10.1001/jama.2020.1585.

47. Zhang J., Wang S., Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J.Med. Virol. 2020; 92 (6): 680–682. DOI: 10.1002/jmv.25742.

48. Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, Diamond MS, Ciorba MA, Whelan SPJ, Ding S. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020 May 13; 5 (47): eabc3582. DOI: 10.1126/ sciimmunol.abc3582. PMID: 32404436; PMCID: PMC7285829.

49. Mallapaty S. How sewage could reveal true scale of coronavirus outbreak. Nature. 2020;580 (7802):176– 177.

50. Medema G., Heijnen L., Elsinga G., Italiaander R. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ Sci Technol Lett. 2020; 7: 511–516.

51. Orive G., Lertxundi U., Barcelo D. Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. Sci. Total Environ. 2020: 139298.

52. Arslan M, Xu B, Gamal El-Din M. Transmission of SARS-CoV-2 via fecal-oral and aerosols-borne routes: Environmental dynamics and implications for wastewater management in underprivileged societies. Sci Total Environ. 2020; 743:140709. DOI: 10.1016/j. scitotenv.2020.140709.

53. La Rosa G.; Mancini P.; Bonanno Ferraro G.; Veneri C.; Iaconelli M.; Bonadonna L.; Lucentini L.; Suffredini E. SARS-CoV-2 has been circulating in northern Italy since December 2019: Evidence from environmental monitoring. Sci. Total Environ. 2021, 750, 141711.10.1016/j.scitotenv.2020.141711.

54. Gu J, Han B, Wang J. COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission. Gastroenterology. 2020 May; 158 (6): 1518–1519. DOI: 10.1053/j.gastro.2020.02.054. Epub 2020 Mar 3. PMID: 32142785; PMCID: PMC7130192.

55. Meyerowitz EA, Richterman A, Gandhi RT, Sax PE. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. Ann Intern Med. 2021 Jan; 174 (1): 69–79. DOI: 10.7326/M20–5008. Epub 2020 Sep 17. PMID: 32941052; PMCID: PMC7505025.

56. Chang, Le & Zhao, Lei & Gong, Huafei& Wang, Lunan& Wang, Lan. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 RNA Detected in Blood Donations. Emerginginfectiousdiseases. 26. 10.3201/ eid2607.200839.

57. Andersson MI, Arancibia-Carcamo CV, Auckland K, Baillie JK, Barnes E, Beneke T, Bibi S, Brooks T, Carroll M, Crook D, Dingle K, Dold C, Downs LO, Dunn L, Eyre DW, Gilbert Jaramillo J, Harvala H, Hoosdally S, Ijaz S, James T, James W, Jeffery K, Justice A, Klenerman P, Knight JC, Knight M, Liu X, Lumley SF, Matthews PC, McNaughton AL, Mentzer AJ, Mongkolsapaya J, Oakley S, Oliveira MS, Peto T, Ploeg RJ, Ratcliff J, Robbins MJ, Roberts DJ, Rudkin J, Russell RA, Screaton G, Semple MG, Skelly D, Simmonds P, Stoesser N, Turtle L, Wareing S, Zambon M. SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Res. 2020 Oct 12; 5: 181. DOI: 10.12688/wellcomeopenres.16002.2. PMID: 33283055; PMCID: PMC7689603.

58. American Association of Blood Banks. Update: impact of 2019 novel coronavirus and blood safety. Available at: https://www.aabb.org/docs/default-source/default-document-library/regulatory/impact-of-2019-novel-coronavirus-on-blood-donation.pdf.

59. Arutjunov G.P., Koziolova N.A., Tarlovskaja E. I., Arutjunov A.G., Grigor’eva N. Ju., Dzhunusbekova G.A. et al. The agreed position of the experts of the Eurasian Association of Therapists on some new mechanisms of COVID-19 pathogenesis: focus on hemostasis, issues of hemotransfusion and the blood gas transport system. Kardiologija. 2020; 60 (5): 4–14. (in Russian)

60. Catherine A Hogan, Bryan A Stevens, Malaya K Sahoo, ChunHong Huang, Natasha Garamani, Saurabh Gombar, Fumiko Yamamoto, Kanagavel Murugesan, Jason Kurzer, James Zehnder, Benjamin A Pinsky, High Frequency of SARS-CoV-2 RNAemia and Association With Severe Disease, Clinical Infectious Diseases, Volume 72, Issue 9, 1 May 2021, Pages e291 — e295, https://doi.org/10.1093/cid/ciaa1054.

61. Patel K.P., Vunnam S.R., Patel P.A. et al. Transmission of SARS-CoV-2: an update of current lliterature. European Journal of Clinical Microbiology and Infectious Diseases. 2020; 39, 11: 20052011. DOI: 10.1007/ s10096-020-03961-1.

62. Wang J., Hongbo Q., Bao L. et al. A contingency plan for the management of the 2019 novel coronavirus outbreak in neonatal intensive care units. The Lancet. Child & Adolescent Health. 2020; 4, 4: 258–259. DOI: 10.1016/S2352–4642 (20) 30040–7.

63. Zeng L, Xia S, Yuan W, Yan K, Xiao F, Shao J, Zhou W. Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatr. 2020 Jul 1; 174 (7): 722–725. DOI: 10.1001/jamapediatrics.2020.0878. PMID: 32215598; PMCID: PMC7099530.

64. Vivanti, A. J., Vauloup-Fellous, C., Prevot, S. et al. Transplacental transmission of SARS-CoV-2 infection. Nat Commun 11,3572 (2020). https://doi.org/10.1038/s41467-020-17436-6.

65. Schwartz DA. An Analysis of 38 Pregnant Women With COVID-19, Their Newborn Infants, and MaternalFetal Transmission of SARS-CoV-2: Maternal Coronavirus Infections and Pregnancy Outcomes. Arch Pathol Lab Med. 2020 Jul 1; 144 (7): 799–805. DOI: 10.5858/arpa.2020–0901-SA. PMID: 32180426.

66. Menter T, Mertz KD, Jiang S, Chen H, Monod C, Tzankov A, Waldvogel S, Schulzke SM, Hösli I, Bruder E. Placental Pathology Findings during and after SARS-CoV-2 Infection: Features of Villitis and Malperfusion. Pathobiology. 2021;88 (1):69–77. doi: 10.1159/000511324. Epub 2020 Sep 18. PMID: 32950981; PMCID: PMC7573905.

67. Baergen RN, Heller DS. Placental Pathology in Covid-19 Positive Mothers: Preliminary Findings. PediatrDevPathol. 2020 May-Jun; 23 (3): 177–180. doi: 10.1177/1093526620925569. PMID: 32397896; PMCID: PMC7252218.

68. Kimberlin D. W, Stagno S. Can SARS-CoV-2 infection be acquired in utero? More definitive evidence is needed. JAMA. 2020; 323, 18: 1788–1789. DOI: 10.1001/jama.2020.4868.

69. Parazzini F., Bortolus R., Mauri P.A. et al. Delivery in pregnant women infected with SARS-CoV-2: a fastreview. International Journal of Gynaecology and Obstetrics. 2020; 150, 1. DOI: 10.1002/ijgo.13166.

70. Zamaniyan M., Ebadi A., Aghajanpoor Mir S. et al. Preterm delivery, maternal death, and vertical transmission in a pregnant woman with COVID-19 infection. Prenatal Diagnosis. 2020. Apr 17. DOI: 10.1002/pd.5713.

71. Alzamora M.C., Paredes T., Caceres D. et al. Severe COVID-19 during pregnancy and possible vertical transmission. American Journal pf Perinatology 2020. Vol. 37. No. 8. P. 861–865. DOI: 10.1055/s-0040–1710050.

72. Baud D., Greub G., Favre G. et al. Second-trimester miscarriage in a pregnant woman with SARS-CoV-2 infection. JAMA. 2020. Vol. 323. No. 21. P. 21982200. DOI: 10.1001/jama.2020.7233.

73. Breastfeeding and COVID-19. Geneva: World Health Organization; 2020 (Available at: https://www.who.int/ news-room/commentaries/detail/breastfeeding-and-covid-19.

74. Pengfei Cui, Zhe Chen, Tian Wang, Jun Dai, Jinjin Zhang, Ting Ding, Jingjing Jiang, Jia Liu, Cong Zhang, Wanying Shan, Sheng Wang, Yueguang Rong, Jiang Chang, Xiaoping Miao, Xiangyi Ma, Shixuan Wang medRxiv 2020.02.26.20028225; DOI: https://doi.org/10.1101/2020.02.26.20028225.

75. Pan F, Xiao X, Guo J, Song Y, Li H, Patel DP, Spivak AM, Alukal JP, Zhang X, Xiong C, Li PS, Hotaling JM. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. FertilSteril. 2020 Jun; 113 (6):1135–1139. DOI: 10.1016/j.fertnstert.2020.04.024. Epub 2020 Apr 17. PMID: 32482249; PMCID: PMC7164916.

76. Lewis D. Superspreading drives the COVID pandemic — and could help to tame it. Nature. 2021 Feb; 590 (7847): 544–546. DOI: 10.1038/d41586-021-00460-x. PMID: 33623168.

Коронавирус SARS-CoV-2, по всей вероятности, надолго вошел в человеческую популяцию, сформировав развитие эпидемического процесса во всем его проявлении. Известно, что обязательным условием существования любого паразитарного организма является его перемещение из одного организма в другой с помощью какого-либо механизма передачи, обеспечивающего его существование как вида. Среди всех известных механизмов и путей передачи наиболее значимым для коронавирусной инфекции считается аэрозольный (аэрогенный, аспирационный) механизм с воздушно-капельным и воздушно-пылевым путями передачи. Реализация контактного механизма происходит при непосредственном взаимодействии с больным острой или бессимптомной формой заболевания, например при рукопожатиях, объятиях, совместном проживании или работе в одном помещении, а также при соприкосновениях с поверхностями и предметами, контаминированными вирусом. Никто не исключает возможность фекально-орального механизма передачи вируса, так как РНК SARS-CoV-2 обнаруживалась в образцах фекалий больных новой коронавирусной инфекцией. Появились данные и о других путях передачи инфекции, например от матери к ребенку через кровь. В связи с чем продолжаются активные дискуссии по поводу механизмов и путей передачи инфекционного агента SARS CoV-2, а также их значимости. Получение объективных данных по этому вопросу позволит более рационально воздействовать на второе звено эпидемического процесса, тем самым значительно уменьшить риск передачи инфекции [1, 2].

Цель — проанализировать по доступным литературным источникам современные данные о механизмах и путях распространения возбудителя COVID-19 и рассмотреть возможные мероприятия по воздействию на второе звено эпидемиологической цепочки с целью снижения рисков инфицирования.

Проведен отбор рецензируемой литературы, опубликованной с 2019 по 2021 г. в базе данных PubMed и e-library.ru, а также по ссылкам в статьях. Для получения статистических данных использовались интернет-ресурсы Всемирной организации здравоохранения (ВОЗ), открытые данные Роспотребнадзора, Министерства здравоохранения РФ, Росстата.

Для Цитирования:
Каира Алла Николаевна, Политова Нина Григорьевна, Свитич Оксана Анатольевна, Механизмы и пути передачи коронавирусной инфекции SARS-CoV-2. Санитарный врач. 2021;12.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: