По всем вопросам звоните:

+7 495 274-22-22

УДК: 616.89-007 DOI:10.33920/med-01-2101-02

Эффективность применения стимуляции блуждающего нерва после неудачного хирургического лечения фармакорезистентной эпилепсии

Трифонов Игорь Сергеевич канд. мед. наук, врач-нейрохирург Университетской клиники, ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России; ассистент кафедры нейрохирургии и нейрореанимации, ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России; E-mail: dr.trifonov@mail.ru, ORCID 0000-0002-6911-0975
Синкин Михаил Владимирович канд. мед. наук, клинический нейрофизиолог, старший научный сотрудник и руководитель группы клинической нейрофизиологии отделения неотложной нейрохирургии, ГБУЗ «НИИ скорой помощи (СП) им. Н.В. Склифосовского Департамента здравоохранения г. Москвы (ДЗМ)»; руководитель лаборатории инвазивных нейроинтерфейсов Университетской клиники, ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России; E-mail: mvsinkin@gmail.com, ORCID 0000-0001-5026-0060
Нехороших Александра Егоровна ординатор кафедры нейрохирургии и нейрореанимации, ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А.И. Евдокимова» Минздрава России; E-mail: medsashka@gmail.com, ORCID 0000-0003-1014-211X

Согласно данным ВОЗ, около 50 млн человек в мире страдают эпилепсией, при этом 20–40 % имеют резистентность к противоэпилептическим препаратам и нуждаются в альтернативных методах лечения. В арсенале нейрохирургов имеется широкий спектр операций, имеющих доказанную эффективность в борьбе с фармакорезистентной эпилепсией. Такой перспективный вид лечения, как стимуляция блуждающего нерва, может применяться как при противопоказанном резекционном хирургическом вмешательстве, так и после него. В настоящее время область VNS-терапии продолжает исследоваться, как и эффективность и рациональность ее применения.

Литература:

1. Современная эпилептология: проблемы и решения / ed. Гусев Е.И., Гехт А.Б. Москва: ООО «Буки-Веди», 2015. 520 p.

2. Beghi E. The Epidemiology of Epilepsy. Neuroepidemiology. 2020. Vol. 54, № 2. P. 185–191.

3. Fiest K.M. et al. Prevalence and incidence of epilepsy. Neurology. 2017. Vol. 88, № 3. P. 296.

4. Guekht A. et al. The epidemiology of epilepsy in the Russian Federation. Epilepsy Research. 2010. Vol. 92, № 2. P. 209–218.

5. Janmohamed M., Brodie M.J., Kwan P. Pharmacoresistance — Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology. 2020. Vol. 168. P. 107790.

6. Henning O. et al. Refractory epilepsy and nonadherence to drug treatment. Epilepsia Open. United States, 2019. Vol. 4, № 4. P. 618–623.

7. Kalilani L. et al. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia. United States, 2018. Vol. 59, № 12. P. 2179–2193.

8. Kwan P. et al. Defi nition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. United States, 2010. Vol. 51, № 6. P. 1069–1077.

9. Крылов В.В. и др. Клинические рекомендации по предоперационному обследованию и хирургическому лечению пациентов с фармакорезистентными формами эпилепсии. 2015.

10. Шова Н.И. и др. Суицидальное поведение у пациентов с эпилепсией в практике врача невролога. Социальная и клиническая психиатрия. 2019. Vol. 29, № 3. P. 51–55.

11. Парфенова Е.В., Ридер Ф.К., Герсамия А.Г. Стигматизация пациентов с эпилепсией. Неврология, нейропсихиатрия, психосоматика. 2017. Vol. 9, № 1S. P. 78–83.

12. Люкшина Н.Г. Внезапная смерть при эпилепсии: эпидемиология, факторы риска, патофизиологические механизмы и пути ее снижения. Вестник эпилептологии. 2015. № 1. P. 12–20.

13. Крылов В.В. и др. Состояние нейрохирургической службы Российской Федерации. Нейрохирургия. 2016. Vol. 3, № 3. P. 3–44.

14. Englot D.J., Chang E.F., Vecht C.J. Chapter 16 — Epilepsy and brain tumors. Handbook of Clinical Neurology / ed. Berger M.S., Weller M. Elsevier, 2016. Vol. 134. P. 267–285.

15. Chen D.Y. et al. Tumor-related epilepsy: epidemiology, pathogenesis and management. Journal of NeuroOncology. 2018. Vol. 139, № 1. P. 13–21.

16. Ollivier I. et al. Predictive factors of epilepsy in arteriovenous malformation. Neurochirurgie. 2020.

17. Soldozy S. et al. Arteriovenous malformation presenting with epilepsy: a multimodal approach to diagnosis and treatment. Neurosurg Focus. United States, 2020. Vol. 48, № 4. P. E17.

18. Rosenow F. et al. Cavernoma-related epilepsy: review and recommendations for management--report of the Surgical Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. United States, 2013. Vol. 54, № 12. P. 2025–2035.

19. Wang F. et al. Microsurgical treatment of temporal cavernous malformation presenting with epilepsy. Zhonghua Yi Xue Za Zhi. China, 2018. Vol. 98, № 9. P. 658–661.

20. Schuss P. et al. Cavernoma-related epilepsy in cavernous malformations located within the temporal lobe: surgical management and seizure outcome. Neurosurg Focus. United States, 2020. Vol. 48, № 4. P. E6.

21. Khoo H.M. et al. Internodular functional connectivity in heterotopia-related epilepsy. Ann Clin Transl Neurol. United States, 2019. Vol. 6, № 6. P. 1010–1023.

22. Lohmror A., Choudhary R. Movement Disorder and Epilepsy in Subependymal Nodular Heterotopia. J Assoc Physicians India. India, 2019. Vol. 67, № 7. P. 11–12.

23. Buompadre M.C. [Malformations of cortical development and epilepsy]. Medicina (B Aires). Argentina, 2019. Vol. 79 Suppl 3. P. 37–41.

24. Степаненко А.Ю. Кортикальные дисплазии как эпилептогенные поражения. Нейрохирургия. 2013. № 3. P. 85–91.

25. Копачев Д. и др. Склероз гиппокампа: патогенез, клиника, диагностика, лечение. Вопросы нейрохирургии. 2016. Vol. 80, № 4. P. 109–116.

26. Крылов В.В. и др. Хирургическое лечение больных с магнитно-резонасно-негативными фармакорезистентными формами эпилепсии. Неврологический журнал. 2016. Vol. 21, № 4. P. 213–218.

27. Muhlhofer W. et al. MRI-negative temporal lobe epilepsy-What do we know?. Epilepsia. United States, 2017. Vol. 58, № 5. P. 727–742.

28. Трифонов И.С. и др. Хирургическое лечение МРТ-негативной височной эпилепсии (обзор литературы). Нейрохирургия. 2019. Vol. 21, № 2. P. 76–84.

29. Nunes Dias L. et al. Multinodular and vacuolating neuronal tumor associated with focal cortical dysplasia in a child with refractory epilepsy: a case report and brief review of literature. Child’s Nervous System. 2020.

30. Крылов В.В. и др. Результаты хирургического лечения пациентов с фармакорезистентными формами эпилепсии. Нейрохирургия. 2017. Vol. 1. P. 15–22.

31. Крылов В.В., Трифонов И.С., Кочеткова О.О. К448. Нейрохирургия. 2016. Vol. 4. P. 115–121.

32. Калинкин А.А. и др. Глубинная стимуляция в нейрохирургии. 2019. Vol. 10, № 1. P. 63–71.

33. Lanska D.J. J.L. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology. United States, 2002. Vol. 58, № 3. P. 452–459.

34. Zabara J. Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia. United States, 1992. Vol. 33, № 6. P. 1005–1012.

35. Howland R.H. Vagus Nerve Stimulation. Current Behavioral Neuroscience Reports. 2014. Vol. 1, № 2. P. 64–73.

36. Groves D.A., Brown V.J. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical eff ects. Neurosci Biobehav Rev. United States, 2005. Vol. 29, № 3. P. 493–500.

37. Penry J.K., Dean J.C. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia. United States, 1990. Vol. 31 Suppl 2. P. S40-43.

38. Morris G.L. 3rd, Mueller W.M. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology. United States, 1999. Vol. 53, № 8. P. 1731–1735.

39. Fan J.-J. et al. Research progress of vagus nerve stimulation in the treatment of epilepsy. CNS Neurosci Ther. 2019. Vol. 25, № 11. P. 1222–1228.

40. Center for Devices and Radiological Health (CDRH). Summary of Safety and Eff ectiveness Data — VNS TherapyTM System (Epilepsy) [Electronic resource]. Safety and Eff ectiveness Data — VNS TherapyTM System (Epilepsy) [PDF fi le]. Food and Drug Administration (FDA) Website. 2017. URL: https://www. accessdata.fda.gov/ cdrh_docs/pdf/p970003s207b.pdf (accessed: 01.05.2020).

41. Englot D.J. et al. Rates and Predictors of Seizure Freedom With Vagus Nerve Stimulation for Intractable Epilepsy. Neurosurgery. 2016. Vol. 79, № 3. P. 345–353.

42. Wang H.-J. et al. Predictors of seizure reduction outcome after vagus nerve stimulation in drug-resistant epilepsy. Seizure. England, 2019. Vol. 66. P. 53–60.

43. Colicchio G. et al. Vagal nerve stimulation for drug-resistant epilepsies in diff erent age, aetiology and duration. Childs Nerv Syst. Germany, 2010. Vol. 26, № 6. P. 811–819.

44. Champeaux C. et al. Vagus Nerve Stimulation Removal or Replacement Involving the Lead and the Electrode: Surgical Technique, Institutional Experience and Outcome. World Neurosurg. United States, 2017. Vol. 99. P. 275–281.

45. Timárová G. et al. Vagal nerve stimulation for drug-resistant epilepsy: Effi cacy and adverse events in an epilepsy centre with long-term follow-up. Journal of the Neurological Sciences. 2017. Vol. 381. P. 691.

46. Chrastina J. et al. Older Age and Longer Epilepsy Duration Do Not Predict Worse Seizure Reduction Outcome after Vagus Nerve Stimulation. J Neurol Surg A Cent Eur Neurosurg. Germany, 2018. Vol. 79, № 2. P. 152–158.

47. Perucca E. Birth defects after prenatal exposure to antiepileptic drugs. Lancet Neurol. England, 2005. Vol. 4, № 11. P. 781–786.

48. du Plessis A.J., Kaufmann W.E., Kupsky W.J. Intrauterine-onset myoclonic encephalopathy associated with cerebral cortical dysgenesis. J Child Neurol. United States, 1993. Vol. 8, № 2. P. 164–170.

49. Suller Marti A. et al. Experience on the use of Vagus Nerve Stimulation during pregnancy. Epilepsy Res. Netherlands, 2019. Vol. 156. P. 106186.

50. Клочков М.Н. и др. Опыт применения имплантации стимулятора блуждающего нерва во время беременности у пациентки с фармакорезистентной эпилепсией. Эпилепсия и пароксизмальные состояния. 2019. Vol. 4, № 11. P. 388–394.

51. Chase M.H., Sterman M.B., Clemente C.D. Cortical and subcortical patterns of response to aff erent vagal stimulation. Exp Neurol. United States, 1966. Vol. 16, № 1. P. 36–49.

52. Rutecki P. Anatomical, physiological, and theoretical basis for the antiepileptic eff ect of vagus nerve stimulation. Epilepsia. United States, 1990. Vol. 31 Suppl 2. P. S1–6.

53. Di Lazzaro V. et al. Eff ects of vagus nerve stimulation on cortical excitability in epileptic patients. Neurology. United States, 2004. Vol. 62, № 12. P. 2310–2312.

54. Roosevelt R.W. et al. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain Res. Netherlands, 2006. Vol. 1119, № 1. P. 124–132.

55. Naritoku D.K., Terry W.J., Helfert R.H. Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. Epilepsy Res. Netherlands, 1995. Vol. 22, № 1. P. 53–62.

56. Katagiri M. et al. Anti-seizure eff ect and neuronal activity change in the genetic-epileptic model rat with acute and chronic vagus nerve stimulation. Epilepsy Res. Netherlands, 2019. Vol. 155. P. 106159.

57. Henry T.R. et al. Brain blood-fl ow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: II. prolonged eff ects at high and low levels of stimulation. Epilepsia. United States, 2004. Vol. 45, № 9. P. 1064–1070.

58. Garnett E.S. et al. Regional cerebral blood fl ow in man manipulated by direct vagal stimulation. Pacing Clin Electrophysiol. United States, 1992. Vol. 15, № 10 Pt 2. P. 1579–1580.

59. Крылов В.В. et al. Хирургия эпилепсии. Москва: ИД «АБВ-пресс», 2019. 408 p.

60. Ohemeng K.K., Parham K. Vagal Nerve Stimulation: Indications, Implantation, and Outcomes. Otolaryngol Clin North Am. United States, 2020. Vol. 53, № 1. P. 127–143.

61. Giordano F. et al. Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity. Epilepsia. United States, 2017. Vol. 58 Suppl 1. P. 85–90.

62. González H.F.J., Yengo-Kahn A., Englot D.J. Vagus Nerve Stimulation for the Treatment of Epilepsy. Neurosurg Clin N Am. 2019. Vol. 30, № 2. P. 219–230.

63. Ali I.I. et al. Complete heart block with ventricular asystole during left vagus nerve stimulation for epilepsy. Epilepsy Behav. United States, 2004. Vol. 5, № 5. P. 768–771.

64. Tatum W.O. 4th et al. Ventricular asystole during vagus nerve stimulation for epilepsy in humans. Neurology. United States, 1999. Vol. 52, № 6. P. 1267–1269.

65. Bhattacharyya N., Kotz T., Shapiro J. Dysphagia and aspiration with unilateral vocal cord immobility: incidence, characterization, and response to surgical treatment. Ann Otol Rhinol Laryngol. United States, 2002. Vol. 111, № 8. P. 672–679.

66. Fahy B.G. Intraoperative and perioperative complications with a vagus nerve stimulation device. J Clin Anesth. United States, 2010. Vol. 22, № 3. P. 213–222.

67. Zalvan C. et al. Laryngopharyngeal dysfunction from the implant vagal nerve stimulator. Laryngoscope. United States, 2003. Vol. 113, № 2. P. 221–225.

68. Spuck S. et al. Operative and technical complications of vagus nerve stimulator implantation. Neurosurgery. United States, 2010. Vol. 67, № 2 Suppl Operative. P. 489–494.

69. Kahlow H., Olivecrona M. Complications of vagal nerve stimulation for drug-resistant epilepsy: a single center longitudinal study of 143 patients. Seizure. England, 2013. Vol. 22, № 10. P. 827–833.

70. Révész D., Rydenhag B., Ben-Menachem E. Complications and safety of vagus nerve stimulation: 25 years of experience at a single center. J Neurosurg Pediatr. United States, 2016. Vol. 18, № 1. P. 97–104.

71. Couch J.D., Gilman A.M., Doyle W.K. Long-term Expectations of Vagus Nerve Stimulation: A Look at Battery Replacement and Revision Surgery. Neurosurgery. United States, 2016. Vol. 78, № 1. P. 42–46.

72. Selner A.N. et al. Vagal Nerve Stimulation for Epilepsy in Adults: A Database Risk Analysis and Review of the Literature. World Neurosurg. United States, 2019. Vol. 121. P. e947–e953.

73. Baehr M., Frotscher M. Duus’ Topical Diagnosis in Neurology. Stuttgart, Germany: Georg Thieme Verlag KG, 2012. 608 p.

74. Liporace J. et al. Vagal nerve stimulation: adjustments to reduce painful side eff ects. Neurology. United States, 2001. Vol. 57, № 5. P. 885–886.

75. Papacostas S.S. et al. Induction of central-type sleep apnea by vagus nerve stimulation. Electromyogr Clin Neurophysiol. Belgium, 2007. Vol. 47, № 1. P. 61–63.

76. Holmes M.D., Chang M., Kapur V. Sleep apnea and excessive daytime somnolence induced by vagal nerve stimulation. Neurology. United States, 2003. Vol. 61, № 8. P. 1126–1129.

77. Marzec M. et al. Eff ects of vagus nerve stimulation on sleep-related breathing in epilepsy patients. Epilepsia. United States, 2003. Vol. 44, № 7. P. 930–935.

78. Amar A.P., Elder J.B., Apuzzo M.L.J. Vagal Nerve Stimulation for Seizures. Textbook of Stereotactic and Functional Neurosurgery / ed. Lozano A.M., Gildenberg P.L., Tasker R.R. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. P. 2801–2822.

79. Хачатрян В.А., Маматханов М.Р., Лебедев К.Э. Вагостимуляция в системе хирургического лечения эпилепсии (обзор литературы). Нейрохирургия и неврология детского возраста. 2012. № 2–3. P. 152–161.

80. Elliott R.E. et al. Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: longterm outcomes and predictors of response. Epilepsy Behav. United States, 2011. Vol. 20, № 1. P. 57–63.

81. Iriarte J. et al. Spasm of the sternocleidomastoid muscle induced by vagal nerve stimulation. Neurology. United States, 2001. Vol. 57, № 12. P. 2319–2320.

82. Kim W., Clancy R.R., Liu G.T. Horner syndrome associated with implantation of a vagus nerve stimulator. Am J Ophthalmol. United States, 2001. Vol. 131, № 3. P. 383–384.

83. Amar A.P., Apuzzo M.L.J., Liu C.Y. Vagus nerve stimulation therapy after failed cranial surgery for intractable epilepsy: results from the vagus nerve stimulation therapy patient outcome registry. Neurosurgery. United States, 2008. Vol. 62 Suppl 2. P. 506–513.

84. Elliott R.E. et al. Impact of failed intracranial epilepsy surgery on the eff ectiveness of subsequent vagus nerve stimulation. Neurosurgery. United States, 2011. Vol. 69, № 6. P. 1210–1217.

85. Tsai J.-D. et al. Vagus nerve stimulation in pediatric patients with failed epilepsy surgery. Acta Neurol Belg. Italy, 2020.

86. Hornig G.W. et al. Left vagus nerve stimulation in children with refractory epilepsy: an update. South Med J. United States, 1997. Vol. 90, № 5. P. 484–488.

87. Frost M. et al. Vagus nerve stimulation in children with refractory seizures associated with Lennox-Gastaut syndrome. Epilepsia. United States, 2001. Vol. 42, № 9. P. 1148–1152.

88. Helmers S.L. et al. Vagus nerve stimulation therapy in pediatric patients with refractory epilepsy: retrospective study. J Child Neurol. United States, 2001. Vol. 16, № 11. P. 843–848.

89. Labar D. Vagus nerve stimulation for 1 year in 269 patients on unchanged antiepileptic drugs. Seizure. England, 2004. Vol. 13, № 6. P. 392–398.

90. Katagiri M. et al. Combined surgical intervention with vagus nerve stimulation following corpus callosotomy in patients with Lennox-Gastaut syndrome. Acta Neurochir (Wien). Austria, 2016. Vol. 158, № 5. P. 1005–1012.

91. Wasade V.S. et al. Long-term seizure and psychosocial outcomes of vagus nerve stimulation for intractable epilepsy. Epilepsy Behav. United States, 2015. Vol. 53. P. 31–36.

92. García-Pallero M.A. et al. Eff ectiveness of vagal nerve stimulation in medication-resistant epilepsy. Comparison between patients with and without medication changes. Acta Neurochir (Wien). Austria, 2017. Vol. 159, № 1. P. 131–136.

93. Kim M.-J. et al. An interictal EEG can predict the outcome of vagus nerve stimulation therapy for children with intractable epilepsy. Childs Nerv Syst. Germany, 2017. Vol. 33, № 1. P. 145–151.

94. Ghaemi K. et al. Vagus nerve stimulation: outcome and predictors of seizure freedom in long-term follow-up. Seizure. England, 2010. Vol. 19, № 5. P. 264–268.

95. Janszky J. et al. Vagus nerve stimulation: predictors of seizure freedom. J Neurol Neurosurg Psychiatry. 2005. Vol. 76, № 3. P. 384–389.

96. Qiabi M. et al. Vagus nerve stimulation for epilepsy: the notre-dame hospital experience. Can J Neurol Sci. England, 2011. Vol. 38, № 6. P. 902–908.

97. Koutroumanidis M. et al. VNS in patients with previous unsuccessful resective epilepsy surgery: antiepileptic and psychotropic eff ects. Acta Neurol Scand. Denmark, 2003. Vol. 107, № 2. P. 117–121.

1. Modern epileptology: problems and solutions / ed. Gusev E.I., Gekht A.B. Moscow: LLC Buki-Vedi, 2015. 520 p.

2. Beghi E. The Epidemiology of Epilepsy // Neuroepidemiology. 2020. Vol. 54, no. 2. P. 185–191.

3. Fiest K.M. et al. Prevalence and incidence of epilepsy // Neurology. 2017. Vol. 88, no. 3. P. 296.

4. Guekht A. et al. The epidemiology of epilepsy in the Russian Federation // Epilepsy Research. 2010. Vol. 92, no. 2. P. 209–218.

5. Janmohamed M., Brodie M.J., Kwan P. Pharmacoresistance — Epidemiology, mechanisms, and impact on epilepsy treatment // Neuropharmacology. 2020. Vol. 168. P. 107790.

6. Henning O. et al. Refractory epilepsy and nonadherence to drug treatment. // Epilepsia Open. United States, 2019. Vol. 4, no. 4. P. 618–623.

7. Kalilani L. et al. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. // Epilepsia. United States, 2018. Vol. 59, no. 12. P. 2179–2193.

8. Kwan P. et al. Defi nition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. // Epilepsia. United States, 2010. Vol. 51, no. 6. P. 1069–1077.

9. Krylov V.V. et al. Clinical guidelines for preoperative examination and surgical treatment of patients with drug-resistant forms of epilepsy. 2015.

10. Shova N.I. et al. Suicidal behavior in patients with epilepsy in the practice of a neurologist // Social and Clinical Psychiatry. 2019. Vol. 29, no. 3. P. 51–55.

11. Parfenova E.V., Rider F.K., Gersamia A.G. Stigmatization of patients with epilepsy // Neurology, neuropsychiatry, psychosomatics. 2017. Vol. 9, no. 1. P. 78–83.

12. Liukshina N.G. Sudden death in epilepsy: epidemiology, risk factors, pathophysiological mechanisms and ways to reduce it // Bulletin of Epileptology. 2015. no. 1. P. 12–20.

13. Krylov V.V. et al. State of the neurosurgical service of the Russian Federation // Neurosurgery. 2016. Vol. 3, no. 3. P. 3–44.

14. Englot D.J., Chang E.F., Vecht C.J. Chapter 16 — Epilepsy and brain tumors // Handbook of Clinical Neurology / ed. Berger M.S., Weller M. Elsevier, 2016. Vol. 134. P. 267–285.

15. Chen D.Y. et al. Tumor-related epilepsy: epidemiology, pathogenesis and management // Journal of NeuroOncology. 2018. Vol. 139, no. 1. P. 13–21.

16. Ollivier I. et al. Predictive factors of epilepsy in arteriovenous malformation // Neurochirurgie. 2020.

17. Soldozy S. et al. Arteriovenous malformation presenting with epilepsy: a multimodal approach to diagnosis and treatment. // Neurosurg Focus. United States, 2020. Vol. 48, no. 4. P. E17.

18. Rosenow F. et al. Cavernoma-related epilepsy: review and recommendations for management--report of the Surgical Task Force of the ILAE Commission on Therapeutic Strategies. // Epilepsia. United States, 2013. Vol. 54, no. 12. P. 2025–2035.

19. Wang F. et al. Microsurgical treatment of temporal cavernous malformation presenting with epilepsy. // Zhonghua Yi Xue Za Zhi. China, 2018. Vol. 98, no. 9. P. 658–661.

20. Schuss P. et al. Cavernoma-related epilepsy in cavernous malformations located within the temporal lobe: surgical management and seizure outcome. // Neurosurg Focus. United States, 2020. Vol. 48, no. 4. P. E6.

21. Khoo H.M. et al. Internodular functional connectivity in heterotopia-related epilepsy. // Ann Clin Transl Neurol. United States, 2019. Vol. 6, no. 6. P. 1010–1023.

22. Lohmror A., Choudhary R. Movement Disorder and Epilepsy in Subependymal Nodular Heterotopia. // J Assoc Physicians India. India, 2019. Vol. 67, no. 7. P. 11–12.

23. Buompadre M.C. [Malformations of cortical development and epilepsy]. // Medicina (B Aires). Argentina, 2019. Vol. 79 Suppl 3. P. 37–41.

24. Stepanenko A.Iu. Cortical dysplasias as epileptogenic lesions. // Neurosurgery. 2013. no. 3. P. 85–91.

25. Kopachev D. et al. Hippocampal sclerosis: pathogenesis, clinical picture, diagnosis, treatment // Problems of neurosurgery. 2016. Vol. 80, no. 4. P. 109–116.

26. Krylov V.V. et al. Surgical treatment of patients with magnetic resonance-negative drug-resistant forms of epilepsy // Neurological journal. 2016. Vol. 21, no. 4. P. 213–218.

27. Muhlhofer W. et al. MRI-negative temporal lobe epilepsy-What do we know? // Epilepsia. United States, 2017. Vol. 58, no. 5. P. 727–742.

28. Trifonov I.S. et al. Surgical treatment of MRI-negative temporal lobe epilepsy (literature review). // Neurosurgery. 2019. Vol. 21, no. 2. P. 76–84.

29. Nunes Dias L. et al. Multinodular and vacuolating neuronal tumor associated with focal cortical dysplasia in a child with refractory epilepsy: a case report and brief review of literature // Child’s Nervous System. 2020.

30. Krylov V.V. et al. Results of surgical treatment of patients with drug-resistant forms of epilepsy // Neurosurgery. 2017. Vol. 1. P. 15–22.

31. Krylov V.V., Trifonov I.S., Kochetkova O.O. K448 // Neurosurgery. 2016. Vol. 4. P. 115-121.

32. Kalinkin A.A. et al. Deep stimulation in neurosurgery. 2019. Vol. 10, no. 1. P. 63–71.

33. Lanska D.J. J.L. Corning and vagal nerve stimulation for seizures in the 1880s. // Neurology. United States, 2002. Vol. 58, no. 3. P. 452–459.

34. Zabara J. Inhibition of experimental seizures in canines by repetitive vagal stimulation. // Epilepsia. United States, 1992. Vol. 33, no. 6. P. 1005–1012.

35. Howland R.H. Vagus Nerve Stimulation // Current Behavioral Neuroscience Reports. 2014. Vol. 1, no. 2. P. 64–73.

36. Groves D.A., Brown V.J. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical eff ects. // Neurosci Biobehav Rev. United States, 2005. Vol. 29, no. 3. P. 493–500.

37. Penry J.K., Dean J.C. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. // Epilepsia. United States, 1990. Vol. 31 Suppl 2. P. S40-43.

38. Morris G.L. 3rd, Mueller W.M. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. // Neurology. United States, 1999. Vol. 53, no. 8. P. 1731–1735.

39. Fan J.-J. et al. Research progress of vagus nerve stimulation in the treatment of epilepsy. // CNS Neurosci Ther. 2019. Vol. 25, no. 11. P. 1222–1228.

40. Center for Devices and Radiological Health (CDRH). Summary of Safety and Eff ectiveness Data — VNS TherapyTM System (Epilepsy) [Electronic resource] // Safety and Eff ectiveness Data — VNS TherapyTM System (Epilepsy) [PDF fi le]. Food and Drug Administration (FDA) Website. 2017. URL: https://www. accessdata.fda.gov/cdrh_docs/ pdf/p970003s207b.pdf (accessed: 01.05.2020).

41. Englot D.J. et al. Rates and Predictors of Seizure Freedom With Vagus Nerve Stimulation for Intractable Epilepsy. // Neurosurgery. 2016. Vol. 79, no. 3. P. 345–353.

42. Wang H.-J. et al. Predictors of seizure reduction outcome after vagus nerve stimulation in drug-resistant epilepsy. // Seizure. England, 2019. Vol. 66. P. 53–60.

43. Colicchio G. et al. Vagal nerve stimulation for drug-resistant epilepsies in diff erent age, aetiology and duration. // Childs Nerv Syst. Germany, 2010. Vol. 26, no. 6. P. 811–819.

44. Champeaux C. et al. Vagus Nerve Stimulation Removal or Replacement Involving the Lead and the Electrode: Surgical Technique, Institutional Experience and Outcome. // World Neurosurg. United States, 2017. Vol. 99. P. 275–281.

45. Timárová G. et al. Vagal nerve stimulation for drug-resistant epilepsy: Effi cacy and adverse events in an epilepsy centre with long-term follow-up // Journal of the Neurological Sciences. 2017. Vol. 381. P. 691.

46. Chrastina J. et al. Older Age and Longer Epilepsy Duration Do Not Predict Worse Seizure Reduction Outcome after Vagus Nerve Stimulation. // J Neurol Surg A Cent Eur Neurosurg. Germany, 2018. Vol. 79, no. 2. P. 152–158.

47. Perucca E. Birth defects after prenatal exposure to antiepileptic drugs. // Lancet Neurol. England, 2005. Vol. 4, no. 11. P. 781–786.

48. du Plessis A.J., Kaufmann W.E., Kupsky W.J. Intrauterine-onset myoclonic encephalopathy associated with cerebral cortical dysgenesis. // J Child Neurol. United States, 1993. Vol. 8, no. 2. P. 164–170.

49. Suller Marti A. et al. Experience on the use of Vagus Nerve Stimulation during pregnancy. // Epilepsy Res. Netherlands, 2019. Vol. 156. P. 106186.

50. Klochkov M.N. et al. Experience in using vagus nerve stimulator implantation during pregnancy in a patient with drug-resistant epilepsy // Epilepsy and paroxysmal states. 2019. Vol. 4, no. 11. P. 388–394.

51. Chase M.H., Sterman M.B., Clemente C.D. Cortical and subcortical patterns of response to aff erent vagal stimulation. // Exp Neurol. United States, 1966. Vol. 16, no. 1. P. 36–49.

52. Rutecki P. Anatomical, physiological, and theoretical basis for the antiepileptic eff ect of vagus nerve stimulation. // Epilepsia. United States, 1990. Vol. 31 Suppl 2. P. 1-6.

53. Di Lazzaro V. et al. Eff ects of vagus nerve stimulation on cortical excitability in epileptic patients. // Neurology. United States, 2004. Vol. 62, no. 12. P. 2310–2312.

54. Roosevelt R.W. et al. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. // Brain Res. Netherlands, 2006. Vol. 1119, no. 1. P. 124–132.

55. Naritoku D.K., Terry W.J., Helfert R.H. Regional induction of fos immunoreactivity in the brain by anticonvulsant stimulation of the vagus nerve. // Epilepsy Res. Netherlands, 1995. Vol. 22, no. 1. P. 53–62.

56. Katagiri M. et al. Anti-seizure eff ect and neuronal activity change in the genetic-epileptic model rat with acute and chronic vagus nerve stimulation. // Epilepsy Res. Netherlands, 2019. Vol. 155. P. 106-159.

57. Henry T.R. et al. Brain blood-fl ow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: II. prolonged eff ects at high and low levels of stimulation. // Epilepsia. United States, 2004. Vol. 45, no. 9. P. 1064–1070.

58. Garnett E.S. et al. Regional cerebral blood fl ow in man manipulated by direct vagal stimulation. // Pacing Clin Electrophysiol. United States, 1992. Vol. 15, no. 10 Pt 2. P. 1579–1580.

59. Krylov V.V. et al. Epilepsy surgery. Moscow: Publishing House ABV-press, 2019. 408 p.

60. Ohemeng K.K., Parham K. Vagal Nerve Stimulation: Indications, Implantation, and Outcomes. // Otolaryngol Clin North Am. United States, 2020. Vol. 53, no. 1. P. 127–143.

61. Giordano F. et al. Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity. // Epilepsia. United States, 2017. Vol. 58 Suppl 1. P. 85–90.

62. González H.F.J., Yengo-Kahn A., Englot D.J. Vagus Nerve Stimulation for the Treatment of Epilepsy. // Neurosurg Clin N Am. 2019. Vol. 30, no. 2. P. 219–230.

63. Ali I.I. et al. Complete heart block with ventricular asystole during left vagus nerve stimulation for epilepsy. // Epilepsy Behav. United States, 2004. Vol. 5, no. 5. P. 768–771.

64. Tatum W.O. 4th et al. Ventricular asystole during vagus nerve stimulation for epilepsy in humans. // Neurology. United States, 1999. Vol. 52, no. 6. P. 1267–1269.

65. Bhattacharyya N., Kotz T., Shapiro J. Dysphagia and aspiration with unilateral vocal cord immobility: incidence, characterization, and response to surgical treatment. // Ann Otol Rhinol Laryngol. United States, 2002. Vol. 111, no. 8. P. 672–679.

66. Fahy B.G. Intraoperative and perioperative complications with a vagus nerve stimulation device. // J Clin Anesth. United States, 2010. Vol. 22, no. 3. P. 213–222.

67. Zalvan C. et al. Laryngopharyngeal dysfunction from the implant vagal nerve stimulator. // Laryngoscope. United States, 2003. Vol. 113, no. 2. P. 221–225.

68. Spuck S. et al. Operative and technical complications of vagus nerve stimulator implantation. // Neurosurgery. United States, 2010. Vol. 67, no. 2 Suppl Operative. P. 489–494.

69. Kahlow H., Olivecrona M. Complications of vagal nerve stimulation for drug-resistant epilepsy: a single center longitudinal study of 143 patients. // Seizure. England, 2013. Vol. 22, no. 10. P. 827–833.

70. Révész D., Rydenhag B., Ben-Menachem E. Complications and safety of vagus nerve stimulation: 25 years of experience at a single center. // J Neurosurg Pediatr. United States, 2016. Vol. 18, no. 1. P. 97–104.

71. Couch J.D., Gilman A.M., Doyle W.K. Long-term Expectations of Vagus Nerve Stimulation: A Look at Battery Replacement and Revision Surgery. // Neurosurgery. United States, 2016. Vol. 78, no. 1. P. 42–46.

72. Selner A.N. et al. Vagal Nerve Stimulation for Epilepsy in Adults: A Database Risk Analysis and Review of the Literature. // World Neurosurg. United States, 2019. Vol. 121. P. e947–e953.

73. Baehr M., Frotscher M. Duus’ Topical Diagnosis in Neurology. Stuttgart, Germany: Georg Thieme Verlag KG, 2012. 608 p.

74. Liporace J. et al. Vagal nerve stimulation: adjustments to reduce painful side eff ects. // Neurology. United States, 2001. Vol. 57, no. 5. P. 885–886.

75. Papacostas S.S. et al. Induction of central-type sleep apnea by vagus nerve stimulation. // Electromyogr Clin Neurophysiol. Belgium, 2007. Vol. 47, no. 1. P. 61–63.

76. Holmes M.D., Chang M., Kapur V. Sleep apnea and excessive daytime somnolence induced by vagal nerve stimulation. // Neurology. United States, 2003. Vol. 61, no. 8. P. 1126–1129.

77. Marzec M. et al. Eff ects of vagus nerve stimulation on sleep-related breathing in epilepsy patients. // Epilepsia. United States, 2003. Vol. 44, no. 7. P. 930–935.

78. Amar A.P., Elder J.B., Apuzzo M.L.J. Vagal Nerve Stimulation for Seizures // Textbook of Stereotactic and Functional Neurosurgery / ed. Lozano A.M., Gildenberg P.L., Tasker R.R. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. P. 2801–2822.

79. Khachatryan V.A., Mamatkhanov M.R., Lebedev K.E. Vagostimulation in the system of surgical treatment of epilepsy (literature review) // Neurosurgery and neurology of childhood. 2012. no. 2–3. P. 152–161.

80. Elliott R.E. et al. Vagus nerve stimulation in 436 consecutive patients with treatment-resistant epilepsy: longterm outcomes and predictors of response. // Epilepsy Behav. United States, 2011. Vol. 20, no. 1. P. 57–63.

81. Iriarte J. et al. Spasm of the sternocleidomastoid muscle induced by vagal nerve stimulation. // Neurology. United States, 2001. Vol. 57, no. 12. P. 2319–2320.

82. Kim W., Clancy R.R., Liu G.T. Horner syndrome associated with implantation of a vagus nerve stimulator. // Am J Ophthalmol. United States, 2001. Vol. 131, no. 3. P. 383–384.

83. Amar A.P., Apuzzo M.L.J., Liu C.Y. Vagus nerve stimulation therapy after failed cranial surgery for intractable epilepsy: results from the vagus nerve stimulation therapy patient outcome registry. // Neurosurgery. United States, 2008. Vol. 62 Suppl 2. P. 506–513.

84. Elliott R.E. et al. Impact of failed intracranial epilepsy surgery on the eff ectiveness of subsequent vagus nerve stimulation. // Neurosurgery. United States, 2011. Vol. 69, no. 6. P. 1210–1217.

85. Tsai J.-D. et al. Vagus nerve stimulation in pediatric patients with failed epilepsy surgery. // Acta Neurol Belg. Italy, 2020.

86. Hornig G.W. et al. Left vagus nerve stimulation in children with refractory epilepsy: an update. // South Med J. United States, 1997. Vol. 90, no. 5. P. 484–488.

87. Frost M. et al. Vagus nerve stimulation in children with refractory seizures associated with Lennox-Gastaut syndrome. // Epilepsia. United States, 2001. Vol. 42, no. 9. P. 1148–1152.

88. Helmers S.L. et al. Vagus nerve stimulation therapy in pediatric patients with refractory epilepsy: retrospective study. // J Child Neurol. United States, 2001. Vol. 16, no. 11. P. 843–848.

89. Labar D. Vagus nerve stimulation for 1 year in 269 patients on unchanged antiepileptic drugs. // Seizure. England, 2004. Vol. 13, no. 6. P. 392–398.

90. Katagiri M. et al. Combined surgical intervention with vagus nerve stimulation following corpus callosotomy in patients with Lennox-Gastaut syndrome. // Acta Neurochir (Wien). Austria, 2016. Vol. 158, no. 5. P. 1005–1012.

91. Wasade V.S. et al. Long-term seizure and psychosocial outcomes of vagus nerve stimulation for intractable epilepsy. // Epilepsy Behav. United States, 2015. Vol. 53. P. 31–36.

92. García-Pallero M.A. et al. Eff ectiveness of vagal nerve stimulation in medication-resistant epilepsy. Comparison between patients with and without medication changes. // Acta Neurochir (Wien). Austria, 2017. Vol. 159, no. 1. P. 131–136.

93. Kim M.-J. et al. An interictal EEG can predict the outcome of vagus nerve stimulation therapy for children with intractable epilepsy. // Childs Nerv Syst. Germany, 2017. Vol. 33, no. 1. P. 145–151.

94. Ghaemi K. et al. Vagus nerve stimulation: outcome and predictors of seizure freedom in long-term followup. // Seizure. England, 2010. Vol. 19, no. 5. P. 264–268.

95. Janszky J. et al. Vagus nerve stimulation: predictors of seizure freedom. // J Neurol Neurosurg Psychiatry. 2005. Vol. 76, no. 3. P. 384–389.

96. Qiabi M. et al. Vagus nerve stimulation for epilepsy: the notre-dame hospital experience. // Can J Neurol Sci. England, 2011. Vol. 38, no. 6. P. 902–908.

97. Koutroumanidis M. et al. VNS in patients with previous unsuccessful resective epilepsy surgery: antiepileptic and psychotropic eff ects. // Acta Neurol Scand. Denmark, 2003. Vol. 107, no. 2. P. 117–121.

Едва ли другим болезням в истории было дано так много разных названий, как эпилепсии: «падучая», «геркулесова болезнь», «божественная болезнь» и др. На протяжении многих веков люди были озабочены этим заболеванием, и наш век — не исключение.

Согласно данным ВОЗ, около 50 млн человек в мире страдают эпилепсией, однако это число не отражает реальное количество больных. Это во многом связано как с гиподиагностикой самого заболевания, так и с предрассудками и страхами пациентов и их родственников, скрывающих недуг [1]. Тем не менее по результатам последних зарубежных эпидемиологических исследований известно, что распространенность эпилепсии в мире в среднем составляет 6,38 на 1000 населения, а заболеваемость — 61,4 на 100 тыс. населения в год. Эти цифры были ниже в странах с высоким уровнем дохода (5,49 на 1000 и 48,9 на 100 тыс. соответственно) и выше в странах со средним и низким уровнем дохода (6,68 на 1000 и 139 на 100 тыс. соответственно) [2, 3].

Согласно данным крупного эпидемиологического исследования, проведенного в 2010 г., распространенность эпилепсии в Российской Федерации в среднем составляет 3,4 на 1000 населения. При этом в европейской части России этот показатель был ниже (2,82 на 1000 населения), чем в Сибири (4,12 на 1000 населения). Подобное различие связано с демографическими показателями, экономической обстановкой и культурой обоих регионов [4].

Известно, что при правильно подобранной терапии противоэпилептическими препаратами (ПЭП) и изменении образа жизни можно достичь полного контроля над приступами. К сожалению, в настоящее время, несмотря на разнообразие ПЭП и схем их комбинации, ответ на терапию наблюдается только у 60–70 % больных. По данным различных исследований, от 20 до 40 % пациентов страдают фармакорезистентной эпилепсией [5–7]. ILAE в 2010 г. сформулировала четкие критерии фармакорезистентности:

1) сохранение приступов при использовании двух и более схем лечения ПЭП;

2) возникновение хотя бы одного приступа в месяц в течение 18 месяцев наблюдения;

Для Цитирования:
Трифонов Игорь Сергеевич, Синкин Михаил Владимирович, Нехороших Александра Егоровна, Эффективность применения стимуляции блуждающего нерва после неудачного хирургического лечения фармакорезистентной эпилепсии. Вестник неврологии, психиатрии и нейрохирургии. 2021;1.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: