По всем вопросам звоните:

+7 495 274-22-22

УДК: 612.43

Диетические аминокислоты и инсулинорезистентность

Сергеева Ксения Владимировна магистрант кафедры биохимии и биоэнергетики спорта им. Н. И. Волкова, Российский государственный университет физической культуры спорта, молодежи и туризма (ГЦОЛИФК), Москва, e-mail: sergeeva_xenia@mail.ru
Мирошников Александр Борисович кандидат биологических наук, начальник отдела нутрицевтики НИИ спортивной медицины, Российский государственный университет физической культуры спорта, молодежи и туризма (ГЦОЛИФК), Москва, e-mail: benedikt116@mail.ru

Развитию ожирения способствует нерациональное питание. Современный подход к лечению избыточного веса основывается не только на оптимизации энергетического баланса, но и на уменьшении проявлений гиперинсулинемит и инсулинорезистентности. Углеводы являются не единственным стимулятором секреции инсулина и отвечают лишь за 47 % его реакции. Белковая пища вызывает более мощный инсулиновый отклик, даже более значительный, чем высокоуглеводная пища. Физиологическая секреция инсулина представляет собой многогранный процесс, и необходимо более полное понимание метаболических взаимодействий между питательными веществами, что имеет клиническую и практическую значимость в лечении ожирения.

Литература:

1. Балаболкин М. И. Инсулинорезистентность в патогенезе сахарного диабета 2-го типа / М. И. Балаболкин, Е. М. Клебанова // Сахарный диабет. — 2001. — № 1. — С. 28–36.

2. Галстян Г. Р. Влияние амилина на функцию β-клеток и регуляцию углеводного обмена // Сахарный диабет. — 2008. — № 4. — С. 24-25.

3. Asmar M., Bache M., Knop F.K., Madsbad S., Holst J.J. Do the actions of glucagon-like peptide-1 on gastric emptying, appetite, and food intake involve release of amylin in humans? // J Clin Endocrinol Metab. 2010; 95(5):2367-75.

4. Balage M., Dupont J.,Mothe-Satney I., Tesseraud S. et al. Leucine supplementation in rats induced a delay in muscle IR/PI3K signaling pathway associated with overall impaired glucose tolerance // J. Nutr. Biochem. 2011; 22:219–226.

5. Barr S. I. Increased dairy product or calcium intake: is body weight or composition affected in humans? // J Nutr. 2003; 133:245S–8S.

6. Bernard J. R., Liao Y. H., Ding Z. et al. An amino acid mixture improves glucose tolerance and lowers insulin resistance in the obese Zucker rat // Amino Acids. 2013; 45:191–203.

7. Bernard J. R., Liao Y. H., Hara D. et al. An amino acid mixture improves glucose tolerance and insulin signaling in Sprague-Dawley rats // Am. J. Physiol. Endocrinol. Metab. 2011; 300:752– 760.

8. Bertin E., Arner P., Bolinder J., Hagström-Toft E. Action of glucagon and glucagon-like peptide-1-(7-36) amide on lipolysis in human subcutaneous adipose tissue and skeletal muscle in vivo // J Clin Endocrinol Metab. 2001; 86(3):1229-34.

9. Boelsma E., Brink E. J., Stafleu A., Hendriks H. F. Measures of postprandial wellness after single intake of two protein-carbohydrate meals // Appetite. 2010; 54(3):456-64.

10. Borer K. T. Advanced exercise endocrinology / Human Kinetics. — 2013. — P. 264.

11. Calbet J. A., MacLean D. A. J. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans // Nutr. 2002;132(8):2174-82.

12. Carr R. D., Larsen M. O., Winzell M. S., Jelic K. et al. Incretin and islet hormonal responses to fat and protein ingestion in healthy men // Am J Physiol Endocrinol Metab. 2008;295:779–84.

13. DelPrato S., Leonetti F., Simonson D. C., Sheehan P., Matsuda M., DeFronzo R. A. Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man // Diabetologiа. 1994; 37:1025–35.

14. Felig Р., Marliss E., Cahill G. F. et al. Plasma amino acid levels and insulin secretion in obesity // Med. — 1969; 281:811–816.

15. Felig P., Wahren J., Hendler R., Brundin T. J. Splanchnic glucose and amino acid metabolism in obesity // Clin. Invest. 1974; 53:582–590.

16. Fiehn O., Garvey W. T., Newman J. W. et al. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women // PLoS One. 2010; 5(12):е15234.

17. Frid A.H., Nilsson M., Holst J. J. Effect of whey on blood glucose and insulin responses to composite breakfast and lunch meals in type 2 diabetic subjects // Am J Clin Nutr. 2005; 82(1):69-75.

18. Gannon M. C., Nuttall J. A., Damberg G., Gupta V., Nuttall F. Q. Effect of protein ingestion on the glucose appearance rate in people with type 2 diabetes // J Clin Endocrinol Metab. — 2001; 86(3):1040-7.

19. Gojda J., Rossmeislová L., Straková R., Tůmová .J, Elkalaf M et al. Chronic dietary exposure to branched chain amino acids impairs glucose disposal in vegans but not in omnivores // Eur J Clin Nutr. 2017; 71(5):594-601.

20. Gougeon R., Morais J. A., Chevalier S., Pereira S., Lamarche M., Marliss E. B. Determinants of whole-body protein metabolism in subjects with and without type 2 diabetes // Diabetes Care. — 2008; 31:128–133.

21. Gunnerud U. J., Heinzle C., Holst J. J., Östman E. M., Björck I. M. Effects of pre-meal drinks with protein and amino acids on glycemic and metabolic responses at a subsequent composite meal // PLoS One. 2012; 7:e44731.

22. Hattersley J. G., Pfeiffer A. F., Roden M., Petzke K. J. et al. Modulation of amino acid metabolic signatures by supplemented isoenergetic diets differing in protein and cereal fiber content // J Clin Endocrinol Metab. 2014; 99(12):E2599-609.

23. Henry R. R., Gumbiner B., Ditzler T., Wallace P., Lyon R., Glauber H. S. Intensive conventional insulin therapy for type II diabetes. Metabolic effects during a 6-mo outpatient trial // Diabetes Care. 1993;16(1):21-31.

24. Holt S. H., Miller J. C., Petocz P. An insulin index of foods: the insulin demand generated by 1000-kJ portions of common foods // Am J Clin Nutr. 1997;66(5):1264-76.

25. Huffman K. M., Shah S. H., Stevens R. D., Bain, J. R. et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women // Diabetes Care. 2009; 32:1678–1683.

26. Hutchison A. T., Feinle-Bisset C., Fitzgerald P. C. Comparative effects of intraduodenal whey protein hydrolysate on antropyloroduodenal motility, gut hormones, glycemia, appetite, and energy intake in lean and obese men // Am J Clin Nutr. 2015; 102(6):1323-31.

27. Hutchison A. T., Piscitelli D., Horowitz M., Jones K. L., Clifton P. M., Standfield S. et al. Acute loaddependent effects of oral whey protein on gastric emptying, gut hormone release, glycemia, appetite, and energy intake in healthy men // Am J Clin Nutr. 2015;102(6):1574-84.

28. Jakubowicz D., Froy O., Ahren B., Boaz M., Landau Z. et al. Incretin, insulinotropic and glucoselowering effects of whey protein pre-load in type 2 diabetes: a randomised clinical trial // Diabetologia. 2014; 57:1807–11.

29. Kraft G., Coate C. K., Winnick J. J. et al. Glucagon’s effect on liver protein metabolism in vivo // American Journal of Physiology — Endocrinology and Metabolism. — 2017.

30. Krebs M., Brehm A., Krssak M., Anderwald C., Bernroider E., Nowotny P. et al. Direct and indirect effects of amino acids on hepatic glucose metabolism in humans // Diabetologia. 2003; 46:917–25.

31. Krebs M., Krssak M., Bernroider E., Anderwald C., Brehm A. et al. Mechanism of amino acidinduced skeletal muscle insulin resistance in humans // Diabetes. 2002; 51:599–605.

32. Krebs M., Roden M. Nutrient-induced insulin resistance in human skeletal muscle // Curr. Med. Chem. 2004; 11:901–908.

33. Kuhara T., Ikeda S. Effects of intravenous infusion of 17 amino acids on the secretion of GH, glucagon, and insulin in sheep // Am J Physiol. 1991; 260:E21-6.

34. Laferrère B., Reilly D., Arias S., Swerdlow N., Gorroochurn P., Bawa B., Bose M. et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss // Sci. Transl. Med. 2011; 3:re2.

35. Le S. C., Bougnères P. Early changes in postprandial insulin secretion, not in insulin sensitivity, characterize juvenile obesity // Diabetes. 1994; 43(5):696–702.

36. Li H., Lee J., He C. et al. Suppression of the mTORC1/STAT3/Notch1 pathway by activated AMPK prevents hepatic insulin resistance induced by excess amino acids // American Journal of Physiology — Endocrinology and Metabolism. 2014; 306(2):197–209.

37. Meier J. J., Gallwitz B., Siepmann N., Holst J. J., Deacon C. F., Schmidt W. E., Nauck M. A. Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagon secretion in healthy human subjects at euglycaemia // Diabetologia. 2003; 46:798–801.

38. McCarty M. F. Vegan proteins may reduce risk of cancer, obesity, and cardiovascular disease by promoting increased glucagon activity // Med Hypotheses. 1999; 53(6):459-85.

39. Müller T. D., Finan B., Clemmensen C., DiMarchi R. D., Tschöp M. H. The New Biology and Pharmacology of Glucagon. 2017. Physiol Rev; 97: 721–766.

40. Newgard C. B. Interplay between lipids and branched-chain amino acids in development of insulin resistance // Cell Metab. 2012; 15:606-614.

41. Newgard C. B., An J., Bain J. R., Muehlbauer M. J. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance // Cell Metab. 2009; 9:311–326.

42. Nilsson M., Holst J. J., Björck I. M. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks // Am J Clin Nutr. 2007; 85(4):996–1004.

43. Nilsson М., Stenberg М., Frid A. H. et al. Glycemia and insulinemia in healthy subjects after lactoseequivalent meals of milk and other food proteins: the role of plasma amino acids and incretins // Am J Clin Nutr. 2004; 80(5): 1246–1253.

44. Nuttall F. Q., Mooradian A. D., Gannon M. C., Billington C., Krezowski P. Eff ect of protein ingestion on the glucose and insulin response to a standardized oral glucose load // Diabetes Care. 1984; 7:465–70.

45. Parrilla R., Goodman M. N., Toews C.J. Effect of glucagon: insulin ratios on hepatic metabolism // Diabetes. 1974; 23:725–731.

46. Pena M. J., Rocha J. C., Borges N. Amino acids, glucose metabolism and clinical relevance for phenylketonuria management // Ann Nutr Disord & Ther. 2015; 2(3):1026.

47. Pereira M. A., Jacobs D. R., Van Horn L. at al. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study // JAMA. 2002; 287:2081–9.

48. Pesta D. H., Samuel V. T. A high-protein diet for reducing body fat: mechanisms and possible caveats // Nutrition & Metabolism. 2014.

49. Pliquett R. U., Führer D., Falk S., Zysset S., von Cramon D. Y., Stumvoll M. The effects of insulin on the central nervous system-focus on appetite regulation // Horm Metab Res. 2006;38(7):442-6.

50. Promintzer M., Krebs M. Effects of dietary protein on glucose homeostasis // Curr. Opin. Clin. Nutr. Metab. Care. 2006; 9: 463–468.

51. Rajpathak N. S., Rimm E. B., Rosner B. et al. Calcium and dairy intakes in relation to long-term weight gain in US men // Am J Clin Nutr. — 2006; 83(3):55–566.

52. Rocha D. M., Faloona G. R., Unger R. H. Glucagon-stimulating activity of 20 amino acids in dogs // J Clin Invest. — 1972; 51: 2346–2351.

53. Samara A., Herbeth B., Ndiaye N. C., Fumeron F. et al. Dairy product consumption, calcium intakes, and metabolic syndrome–related factors over 5 years in the STANISLAS study // Nutrition. — 2013; 29(3):519–524.

54. Sanchez A., Hubbard R. W. Plasma amino acids and the insulin/glucagon ratio as an explanation for the dietary protein modulation of atherosclerosis // Med Hypotheses.— 1991; 36(1):27–32.

55. Schmid R., Schusdziarra V. et al. Role of amino acids in stimulation of postprandial insulin, glucagon, and pancreatic polypeptide in humans // Pancreas. — 1989; 4(3):305-14.

56. Seibert R., Abbasi F., Hantash M. F. et al. Relationship between insulin resistance and amino acids in women and men // Physiological Reports. — 2015; 3(5).

57. Shah S. H., Bain J. R., Muehlbauer M. J., Stevens R. D. et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events // Circ Cardiovasc Genet. 2010; 3:207–214.

58. Shah S. H., Crosslin D. R., Haynes C. et al. Branched chain amino acids levels are associated with improvement in insulin resistance with weight loss // Diabetologia. 2012; 55:321–330.

59. Snijder M. B., van Dam R. M., Stehouwer C. D., Hiddink G. J., Heine R. J., Dekker J. M. A prospective study of dairy consumption in relation to changes in metabolic risk factors: the Hoorn Study // Obesity (Silver Spring). 2008; 16:706–8.

60. Soultoukis G. A., Partridge L. Dietary Protein, Metabolism, and Aging // Annu. Rev. Biochem. 2016; 85:5–34.

61. Steinert R. E., Landrock M. F., Ullrich S. S., Standfield S., Otto B. et al. Effects of intraduodenal infusion of the branched-chain amino acid leucine on ad libitum eating, gut motor and hormone functions, and glycemia in healthy men // Am J Clin Nutr. 2015;102(4):820-7.

62. Tai E.-S., Tan M. L. S., Stevens R. D. et al. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men // Diabetologia. 2010; 53:757–767.

63. Tremblay F., Krebs M., Dombrowski L., Brehm A. Overactivation of S6 kinase 1 as a cause of human insulin resistance during increased amino acid availability // Diabetes. 2005; 54:2674– 2684.

64. Tremblay F., Lavigne C., Jacques H., Marette A. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance // Annu. Rev. Nutr. 2007; 27:293–310.

65. Tricò D., Prinsen H. et al. Elevated α-Hydroxybutyrate and BCAA Levels Predict Deterioration of Glycemic Control in Adolescents // J Clin Endocrinol Metab. 2017 [Epub ahead of print].

66. Um S. H., D’Alessio D., Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1 // Cell Metab. 2006; 3:393–402.

67. Veldhorst M. A., Nieuwenhuizen A. G., Hochstenbach-Waelen A. et al. Dose-dependent satiating effect of whey relative to casein or soy // Physiol Behav. 2009; 96: 675-682.

68. Vergnaud A., Péneau S., Chat-Yung S et al. Dairy consumption and 6-y changes in body weight and waist circumference in middle-aged French adults // Am J Clin Nutr. 2008; 88(5):12481255.

69. Virtanen H. E. K., Koskinen T. T., Voutilainen S., Mursu J. et al. Intake of different dietary proteins and risk of type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study // Br J Nutr. 2017;117(6):882-893.

70. Wang T. J., Larson M. G., Vasan R. S., Cheng S., Rhee E. P. et al. Metabolite profiles and the risk of developing diabetes // Nat. Med. 2011; 17:448–453.

71. Weickert M. O., Roden M., Isken F., Hoffmann D., Nowotny P. et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans // Am J Clin Nutr. 2011; 94(2):459-71.

72. Würtz P., Tiainen М. et al. Circulating metabolite predictors of glycemia in middle‐aged men and women // Diabetes Care. 2012; 35:1749–1751.

73. Yang J. et al. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells // Nutr Rev. 2010; 68(5): 270–279.

74. Zemel M. B. Role of calcium and dairy products in energy partitioning and weight management // Am J Clin Nutr. 2004;79(suppl):907S–12S.

75. Zemel M. B., Thompson W., Milstead A., Morris K., Campbell P. Calcium and dairy acceleration of weight and fat loss during energy restriction in obese adults // Obes Res. 2004; 12:582–90.

76. Zhang Y., Guo K., LeBlanc R. E. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms // Diabetes. 2007; 56:1647–1654.

77. Östman E. M. et al. Inconsistency between glycemic and insulinemic responses to regular and fermented milk products // Am J Clin Nutr. 2001; 74(1): 96–100.

В основе лечения избыточного веса и ожирения лежит рациональная диетотерапия, основанная на уменьшении калорийности рациона. Но основную роль в диетотерапии ожирения отводят жирам и легкоусвояемым углеводам, поэтому многие авторы для снижения калорийности рациона питания больных с избыточным весом традиционно рекомендуют в первую очередь снижать количество жиросодержащих продуктов и углеводов с высоким гликемическим индексом (ГИ), которые быстро всасываются в желудочно-кишечном тракте (ЖКТ), способствуя резкому увеличению выброса инсулина, при одновременном повышении доли белка в рационе, отдавая предпочтение молочным продуктам среди различных видов животных белков, стабильно показывающих благоприятное воздействие на регуляцию глюкозы, массу тела и снижение риска развития сахарного диабета 2-го типа (СД-2) [47, 74, 75]. Учет влияния продуктов на секрецию инсулина является обязательным, так как в настоящее время известно, что одной из причин возникновения и развития ожирения и его осложнений является инсулинорезистентность (ИР) и компенсаторный гиперинсулизм, направленный на поддержание нормального метаболизма глюкозы [1]. Резистентность к инсулину и гиперинсулинемия часто наблюдаются одновременно, и повышенные концентрации инсулина являются причиной инсулиновой резистентности [43]. При этом молочный белок вызывает более значительный инсулиновый отклик, чем предполагалось, исходя из низкого ГИ. Учитывая это, снижение нагрузки на инсулярный аппарат, достигаемое диетотерапией, крайне важно в лечении ожирения.

Инсулинорезистентность — это снижение чувствительности тканей к эндогенному или экзогенному инсулину. К инсулинозависимым тканям относятся мышечная, жировая и печеночная. В клетки этих тканей глюкоза поступает только после взаимодействия инсулина с его рецептором, активации тирозинкиназы рецептора и фосфорилирования субстрата инсулинового рецептора (ИРС-1) и других белков, обеспечивающих перемещение везикул с белком — переносчиком глюкозы (GLUT-4) из внутриклеточного пространства к плазматической мембране. Доказано, что ИР напрямую зависит от степени ожирения и диагностируется у лиц с избыточной массой тела задолго до манифестации СД. Сниженный инсулинозависимый транспорт глюкозы приводит к тому, что поджелудочная железа увеличивает продукцию инсулина для преодоления инсулинорезистентности, и развивается гиперинсулизм. В большинстве случаев высокие уровни инсулина являются первоочередным фактором и приводят к инсулинорезистентности и ожирению [35]. К примеру, жестко контролируя уровень сахара в крови при лечении диабета, требуются значительные дозировки инсулина, что приводит к гиперинсулинемии с прогрессивным увеличением веса даже при сокращении калорийности питания [23]. DelPrato и соавт. [13] показали, что индицирование гиперинсулинемии в физиологических концентрациях в течение 48–72 ч в условиях нормогликемии приводит к снижению чувствительности к инсулину на 20–40 % у здоровых людей.

Для Цитирования:
Сергеева Ксения Владимировна, Мирошников Александр Борисович, Диетические аминокислоты и инсулинорезистентность. Терапевт. 2017;9.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: