По всем вопросам звоните:

+7 495 274-22-22

УДК: 574.523 DOI:10.33920/sel-12-2010-06

Current Molecular-Genetic Research on the Taxonomic Diversity of the Enteral Microbiota in Siberian Fish

Elena Nikolaevna Kashinskaia PhD Candidate in Biological Sciences, Researcher, Research Group of Physiology and Genetics of Hydrobionts, Institute of Systematics and Ecology of Animals, Novosibirsk; ORCID 0000-0001-8097-2333; 11, Frunze str., Novosibirsk, 630091, Russia; e-mail: elena.kashinskaya@inbox.ru
Evgenii Petrovich Simonov PhD Candidate in Biological Sciences, Researcher, Research Group of Physiology and Genetics of Hydrobionts, Institute of Systematics and Ecology of Animals, Novosibirsk; ORCID 0000-0003-0194-4487; 11, Frunze str., Novosibirsk, 630091, Russia; e-mail: ev.simonov@gmail.com
Mikhail Mariianovich Soloviev PhD Candidate in Biological Sciences, Leading Researcher, Research Group of Physiology and Genetics of Hydrobionts, Institute of Systematics and Ecology of Animals, Novosibirsk; ORCID 0000-0001-8097-2333; 11, Frunze str., Novosibirsk, 630091, Russia; e-mail: yarmak85@mail.ru

The review presents the current research on the enteral microbiota of fish from different ecological groups of Western and Eastern Siberia reservoirs. Works on molecular genetic analysis of diverse enteral microbiota in 16 fish species/forms (whitefish from Lake Teletskoye don't take a clear position in the system), inhabiting Lake Chany (Novosibirsk Region), Lake Teletskoye (Altai Republic), Lake Baikal and other reservoirs are summarized. After analyzing the conducted research we can define the morphology of microbial communities in the fish alimentary canal and better understand the peculiarities of Siberian aquatic ecosystems' functioning. Representatives of all four phyla (Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria) were found among the dominants of all fish, regardless of their habitat, taxonomy, the digestive system structure (presence or absence of stomach and pyloric caeca) or food type (except for Lena grayling and Baikal omul). At the level of families and genera, there are no common taxa to all the analyzed fish, and this indicates high plasticity of the enteral microbiota. Such differences can also be explained by the peculiarities of sample preparation before sequencing by different tests. Also, among the dominant taxa in the alimentary canal of most fish, there were often found representatives of the nonculturable microbiota: Pseudoalteromonadaceae (Lake Chany), Comamonadaceae and Bacillaceae (whitefish of Lake Teletskoye) and Rhodobacteraceae (Baikal omul and whitefish). In view of the application, data on the fish enteral microbiota structure will be useful for developing regional aquaculture, since this information allows us to identify pathogenic, opportunistic and probiotic bacterial species in aquatic ecosystems.

Литература:

1. Bel'kova N.L., Hanaeva T.A., Dzjuba E.V. Issledovanie mikroflory zheludochnokishechnogotrakta ryb ozera Bajkal: razrabotka jeffektivnyh metodov vydelenija summarnoj DNK [Study of the microflora of the gastrointestinal tract of fish from Lake Baikal: development of effective methods for the isolation of total DNA]. Povyshenie jeffektivnosti ispol'zovanija vodnyh biologicheskih resursov: materialy konferencii. ["Increasing the efficiency of the use of aquatic biological resources": conference proceedings]. VNIRO, Moscow, 2006, pp. 132–133. (in Russian)

2. Bel'kova N.L., Denikina N.N., Dzjuba E.V. Issledovanie mikrobioma kishechnika maloj golomjanki Comephorus dybowski Korotneff, 1904 [Study of the Microbiome of the Intestine of the Comephorus dybowski Korotneff, 1904] Izvestija Rossijskoj akademii nauk. Serija biologicheskaja, 2015, no.5, pp. 544–551. (in Russian)

3. Dzjuba E.V., Denikina N.N., Pastuhov V.V., Suhanova E.V., Bel'kova N.L. Razrabotka i aprobacija molekuljarno-geneticheskogo sposoba diagnostiki patogennyh mikroorganizmov na vneshnih pokrovah ryb [Development and validation of a molecular-andgenetic technique for diagnosing pathogenic microorganisms of external coatings of fishes]. Voda: himija i jekologija, 2014, no.2, pp. 57–62. (in Russian)

4. Dzjuba E.V., Suhanova E.V., Denikina N.N., Bel'kova N.L. Sravnitel'nyj analiz mikrobiocenozov kishechnika lososevidnyh ryb s raznymi pishhevymi strategijami [Comparative analysis of gut microbiocenoses of salmonid fish with differing feeding strategies]. Fundamental'nye issledovanija. Biologicheskie nauki, 2014, no.11, pp. 2429–2433. (in Russian)

5. Dzjuba E.V., Bel'kova N.L., Denikina N.N. Issledovanie kishechnyh mikrobiomov golomjanok (Cottoidei, Comephoridae) ozera Bajkal [A Study of the Intestinal Microbiomes of the Lake Baikal Oilfishes (Cottoidei, Comephoridae)]. Izvestija RAN. Serija biologicheskaja, 2016, no.6, pp. 658–662. (in Russian)

6. Zujkova E.I., Bochkarev N.A. Osobennosti stroenija i funkcionirovanija zhabernocheljustnogo apparata siga Pravdina Coregonus lavaretus pravdinellus [Specific features of structure and functioning of gill-jaw apparatus of whitefish Coregonus lavaretus pravdinellus]. Journal of Ichthyology, 2008, vol. 48, no.6, pp. 767–776. (in Russian)

7. Kashinskaja E.N., Suhanova E.V., Solov'ev M.M., Izvekova G.I., Glupov V.V. Raznoobrazie mikrobnyh soobshhestv slizistoj i soderzhimogo kishechnika ryb oz. chany (Zapadnaja Sibir') [The diversity of microbial communities of mucus and intestinal contents of fish in lake Chany (Western Siberia)]. 2014, no.2, pp. 82–88. (in Russian).

8. Pul'sirujushhee ozero Chany [Pulsating Chany Lake]. Ed. N.P. Smirnova, A.V. Shnitnikov. Nauka, Leningrad, 1982, 304 p. (in Russian)

9. Sous' S.M., Rostovcev A.A. Parazity ryb Novosibirskoj oblasti. 1: Zabolevanija ryb. Prognozirovanie, terapija, profilaktika [Fish parasites of the Novosibirsk region. 1: Diseases of fish. Forecasting, therapy, prevention]. Gosrybcentr, Tjumen', 2006, 194 p. (in Russian)

10. Suhanova E.V., Dzjuba E.V., Denikina N.N., Miheev I.V., Matjugina E.B., Bel'kova N.L. Opredelenie indikatornyh mikroorganizmov dlja monitoringa infekcionnyh zabolevanij ryb na primere Perca fluviatilis (oz. Arahlej, Zabajkal'skij kraj) [Determination of indicator microorganisms for monitoring infectious diseases of fish by the example of Perca fluviatilis (Lake Arakhley, Trans-Baikal Territory)]. Izvestija Samarskogo nauchnogo centra RAN, 2010, vol.12 (1), pp. 1156–1161. (in Russian)

11. Suhanova E.V. Soobshhestva mikroorganizmov, associirovannyh s lososevidnymi rybami ozera Bajkal [Communities of microorganisms associated with salmonids of Lake Baikal. Abstr. Cand. Boilogi. Sci. diss], 2012, 20 p. (in Russian)

12. Belkova N.L., Sidorova O.Y., Glyzina V.M., Yakchnenko Y.P., Sapozhnikova Y.P., Bukin Yu.S., Baturina O.A., Sukhanova L.V. Gut microbiome of juvenile coregonid fishes: comparison of sympatric species and their F1 hybrids. Fundamental and Applied Limnology, 2017, vol. 189, no.3, pp. 279–290.

13. Buller N.B. Bacteria from fish and other aquatic animals: a practical identification manual. Oxfordshire, CABI, 2004, 394 p.

14. Chakravorty S.A., Helb D., Burday M., Connell N., Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods, 2007, vol. 69, no.2, pp, 330–339.

15. Han S., Liu Y., Zhou Z., He S., Cao Y., Shi P., Yao B., Ringo E. Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences. Aquaculture Research, 2010, vol. 42, pp. 47–56.

16. Kashinskaya E.N., Belkova N.L., Izvekova G.I., Simonov E.P., Andree K.B., Glupov V.V., Baturina O.A., Kabilov M.R., Solovyev M.M. A comparative study on microbiota from the gut of Prussian carp (Carassius gibelio) and their aquatic environmental compartments, using different molecular methods. Journal Applied Microbiology, 2015, vol. 119, pp. 948–961.

17. Kashinskaya E.N., Simonov E.P., Izvekova G.I., Parshukov A.N., Andree K.B., Solovyev M.M. Composition of the microbial communities in the gastrointestinal tract of perch (Perca fluviatilis L. 1758) and cestodes parasitizing the perch digestive tract. Journal of Fish Diseases, 2020, vol. 43, no.1, pp. 23–38.

18. Kashinskaya E.N., Simonov E.P., Kabilov M.R., Izvekova G.I., Andree K.B., Solovyev M.M.Diet and other environmental factors shape the bacterial communities of fish gut in an eutrophic lake. Journal Applied Microbiology, 2018, vol. 125(6). pp. 1626–1641.

19. Kashinskaya E.N., Andree K.B., Simonov E.P., Solovyev M.M. DNA extraction protocols may influence biodiversity detected in the intestinal microbiome: a case study from wild Prussian carp, Carassius gibelio. FEMS Microbiology Ecology. 2017, vol. 93, no. 2, pp. 1–14.

20. Kessel M. Dutilh B.E., Neveling K., Kwint M.P., Veltman J.A., Flik G. Jetten M., Klaren P., Op den Camp H. Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express, 2011, vol. 1, no. 41, pp. 1– 9.

21. Kim D.-H., Brunt J., Austin B. Microbial diversity of intestinal contents and mucus in rainbow trout (Oncorhynchus mykiss). Journal of Applied Microbiology, 2007, vol. 102, pp. 1654–1664.

22. Lyons P.P., Turnbull J.F., Dawson K.A., Crumlish M. Phylogenetic and functional characterization of the distal intestinal microbiome of rainbow trout Oncorhynchus mykiss from both farm and aquarium settings. Journal of Applied Microbiology, 2017, vol. 122, no 2, pp. 347– 363.

23. Olafsen J. Interactions between fish larvae and bacteria in marine aquaculture. Aquaculture, 2001, vol. 200, pp. 223–247.

24. Ringo E., Seppola M., Berg A., Olsen R.E., Schillinger U., Holzapfel W. Characterization of Carnobacterium divergens strain 6251 isolated from intestine of Arctic charr (Salvelinus alpinus L.). Systematic and Applied Microbiology, 2002, vol. 25, pp. 120–129.

25. Ringo E, Sperstad S., Myklebust R., Refstiea S., Krogdahla A. Characterization of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.). The effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture, 2006, vol. 261, no. 3. pp. 829–841.

26. Romero J., Navarrete P. 16S rDNA-based analysis of dominant bacterial populations associated with early life stages of Coho Salmon (Oncorhynchus kisutch). Microbial Ecology, 2006, vol. 51, pp. 422–430.

27. Solovyev M.M., Kashinskaya E.N., Bochkarev N.A., Andree K.B., Simonov E. The effect of diet on the structure of gut bacterial community of sympatric pair of whitefishes (Coregonus lavaretus): one story more. PeerJ, 2019, vol.7 (e8005), pp. 1–36.

28. Sugita H., Ishida Y., Deguchi Y., Kadota H. Aerobic microflora attached to the wall surface in the gastrointestine of Tilapia nilotica. Bulletin of the College of Agriculture and Veterinary Medicine Nihon University, 1982, vol. 39, pp. 302–306.

29. Sugita H. The establishment of an intestinal microflora in developing Goldfish (Carassius auratus) of culture ponds. Microbial ecology, 1988, vol. 15, pp. 333–344.

30. Sullam K., Essinger S.D., Lozupone C.A., O'Connor M.P., Rosen G.L., Knight R., Kilham S.S., Russell J.A. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Molecular Ecology, 2012, vol. 21, pp. 3363–3378.

31. Uchii K., Matsui K., Yonekura R., Tani K., Kenzaka T., Nasu M., Kawabata Z. Genetic and physiological characterization of the intestinal bacterial microbiota of Bluegill (Lepomis macrochirus) with three different feeding habits. Microbial Ecology, 2006, vol. 51. pp. 277–283.

32. Wu S., Wang G., Angert E., Wang W., Cheng Y., Wang G. Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco). Aquaculture, 2010, vol. 303, pp. 1–7.

33. Xia J.H., Lin G., Fu G.H., Wan Z.Y., Lee M., Wang L., Liu X.J., Yue G.H. The intestinal microbiome of fish under starvation. BMC Genomics, 2014, vol. 15, no. 266, pp. 1–11.

During coevolution, the microbial community has become an integral and vital part of the alimentary canal in many invertebrates and vertebrates, including fish [32]. Enteral microbiota plays an important role in the regulation of general metabolism, providing protective functions and digestion in the host body [24, 25, 29]. To date, the key factors influencing the formation of the fish enteral microbiota, such as food spectrum, age, season, water temperature, etc., have been identified [30, 31]. According to some authors, food type is one of the most important factors influencing the structure of the fish enteral microbiota [30-32]. During the microbiocenosis formation in the alimentary canal in the host organism, two groups of microorganisms can be distinguished: the temporary allochthonous microbiota and the autochthonous microbiota that constantly inhabits its mucous membrane surface. As a rule, the allochthonous and autochthonous microbiota enters the alimentary canal from the environment with water and food [31]. At different stages of ontogenesis, the enteral microbiota formation is well studied in fish bred in pond farms where the external environment parameters are monitored [22, 28]. Some researches also address the ways of microbiota formation in the fish alimentary canal [30].

There are various approaches to studying enteral microbiota, such as molecular genetic methods, and techniques for culturing bacteria with physiological and biochemical markers used to identify them. Culturing bacteria on selective media is a traditional research method. However, it has been shown that more than 70% of the enteral microbiota can't be cultured and identified by this method. [13]. To solve the problem of identifying nonculturable taxa, molecular genetic methods are currently widely used. Such approaches are based on the analysis of 16S ribosomal RNA (rRNA) genes and allow identifying nonculturable bacteria. Variable 16S rDNA regions are unique for many bacterial species and strains and are widely used for their identification [14].

Для Цитирования:
Elena Nikolaevna Kashinskaia, Evgenii Petrovich Simonov, Mikhail Mariianovich Soloviev, Current Molecular-Genetic Research on the Taxonomic Diversity of the Enteral Microbiota in Siberian Fish. Рыбоводство и рыбное хозяйство. 2020;12.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: