По всем вопросам звоните:

+7 495 274-22-22

УДК: 669.058:546.27 DOI:10.33920/pro-2-2109-02

Complex metal physical studies of structural steels after twocomponent boron-based diffusion hardening

Roshchupkin V.M., PhD Candidate in Engineering, associate professor, Voronezh State Technical University, Voronezh
Skripkina Yu.V., PhD Candidate in Engineering, associate professor, Southwest State University, Kursk
Gadalov V.N., PhD in Engineering, professor, Southwest State University, Kursk
Gubanov O.M., PhD Candidate in Engineering, associate professor, project manager for the development of new types of products, Group of Companies, Novolipetsk Metallurgical Combine, Lipetsk

Studies of structure, phase composition, and microhardness of steels 45; 40Kh13 (chrome steel) and (25...30)KhGT (chrome-manganese steel) when hardening in mixtures containing boron; boron and silicon as well as boron, silicon, and aluminium, are presented. The boration was carried out at 890 ºC for 3 hours. The results show that boration results in a greater layer thickness than borosiliconizing and boroalumosiliconizing, but the needles of the boride phases are sharper. Obtaining diffusion layers different in structure and with different FeB, Fe2B, Fe3Si phase ratios can significantly influence the resistance to brittle fracture of surface layers of parts operated in real conditions in friction pairs under periodic or constant impact influences. Thus, if the wear process runs without ever manifesting dynamic effects, we can recommend the boration process both for small-sized CVD parts in powder mixtures using unsealed containers and for large-sized parts in coatings that are applied only to the wear surfaces of the parts. If wear occurs at a relatively low level of intermittent shock, it is possible to use a borosiliconizing process at (800...900) ºC.

Литература:

1. Gadalov, V.N. Diffuzionnye boridnye pokrytiya na zheleze, stalyah i splavah (s al'bomom fotografij) [Tekst] /V.N. Gadalov, A.S. Borsyakov, V.G. Sal'nikov [i dr.] // Monografiya. M.: Kurs. 2012. 146 s. – (Nauka).

2. Sitkevich, M.V. Sovmestnye processy himiko-termicheskoj obrabotki s ispol'zovaniem obmazok [Tekst] / M.V. Sitkevich, E.I. Bel'skij // Minsk: Vyssh. SHkola. 1987. 121 s.

3. Sitkevich, M.V. Ispol'zovanie dvuhkomponentnogo diffuzionnogo uprochneniya s uchastiem bora i kremniya dlya povysheniya svojstv stalej [Tekst] / M.V. Sitkevich, N.N. Kuz'menko // Materialy 5 mezhd. NTK Nauka — obrazovaniyu, proizvodstvu, ekonimike. Minsk: BNTU. 2007. 145 s.

4. Sitkevich, M.V. Struktura i svojstva poverhnostnyh sloev zubchatyh peredach, uprochnennyh kompleksnym borirovaniem [Tekst] / M.V. Sitkevich, M.N. Pishchov, S,E. Bel'skij // Tekhnologiya remonta, vosstanovleniya i uprochneniya detalej mashin, mekhanizmov, oborudovaniya, instrumenta i tekhnologicheskoj osnastki. Materialy 10-j mezhd. NPK (15-18 apr. 2008 g.) Spb.: Izd-vo politekhnicheskogo universiteta. 2008. 4.2. S. 346-353.

5. Gadalov, V.N. Izuchenie diffuzionnyh pokrytij na stalyah pri lantanoborirovanii [Tekst] / V.N. Gadalov, A.S. Borsyakov, E.V. CHernyshova // Materialy i uprochnyayushchie tekhnologii — 2009. Kursk: KGTU. 4.2. S. 53-56.

6. Grigorov, P.K. Metodika opredeleniya hrupkosti borirovannogo sloya [Tekst] / P.K. Grigorov, A.I. Kathanov // Povyshenie nadezhnosti i dolgovechnosti detalej mashin. Rostov na Donu. 1972. Vyp. 16. S. 97-98.

7. Gadalov, V.N. Himiko-termicheskaya i elektrofizicheskaya obrabotka splavov i pokrytij [Tekst] /V.N. Gadalov, V.R. Petrenko, A.V. Lyahov // M.: ARGAMAK-MEDIA, 2017.-388 s.

8. Gadalov, V.N. Perspektivnye processy himiko-termicheskoj obrabotki konstrukcionnyh stalej [Tekst] / V.N. Gadalov, I.A. Makarova, A.E. Gvozdev // Izvestiya TulGU. Tekhn. nauki, 2018. Vyp. 12.-S. 567-575.

9. Gadalov, V.N. Diffuzionnoe borirovanie doevtektoidnyh instrumental'nyh stalej. Tekhnologii, struktury, fazovye sostavy i svojstva materialov [Tekst] / V.N. Gadalov, S.G. Emel'yanov, I.A. Makarova // Vestnik mashinostroeniya, 2018. №6.-S. 60-66.

10. Gadalov, V.N. Voprosy tekhnologii: povyshenie rabotosposobnosti special'nyh detalej borirovaniem [Tekst] / V.N. Gadalov, A.V. Filonovich, V.M. Roshchupkin // Glavnyj mekhanik. M.: Panorama, 2020, №4(200).-S. 8-21.

11. Gadalov, V.N. Materialovedenie i metallovedenie svarki. Uchebnik / V.N. Gadalov, V.R. Petrenko, S.V. Safonov i dr. // Moskva; Vologda:Infra-Inzheneriya,2021.-308 s.

It is known that the hardened layers obtained using conventional boration, while having high hardness, are quite brittle. To eliminate this drawback, some of the specimens were subjected to complex boride hardening simultaneously with boration when, along with boron, atoms of other elements diffuse into the surface layers providing increased resistance to brittle fracture due to changes in the structural state. Especially effective in this regard is the use of boriding media, which contain components that provide, along with boron, the diffusion of silicon and other elements borosiliconizing and boroalumosiliconizing processes [1-12], as well as lanthanoboriding [5].

Powder mixtures were used for diffusion hardening, allowing boride hardening in an air environment without the use of additional protective equipment. At the same time, in the case of hardening of small-sized parts or test specimens, the powder mixture is poured into an unsealed container with saturated specimens and kept in an electric furnace with an air atmosphere at a given temperature followed by cooling in the air. In the case of powder mixture-based large-sized parts, after the introduction of water, a coating is prepared and applied only to the working parts of the specimen or part, followed by CVD, which can be combined with heating for hardening [2]. The change in the structural state of cyanated, lanthanoborated, borosilicited, and other layers as compared to borated ones has a very noticeable effect on their microbrittle properties.

Microbrittleness of diffusion layers was determined using the PMT-3 device. Microbrittleness was evaluated by the chipping stress (σ) of the diffusion-hardened surface (the lower the chipping stress, the higher the brittleness), which depends on l (the minimum distance from the center of the diamond pyramidal imprint to the edge of the specimen at load P) [6]:

where c is the diagonal length of the diamond pyramid print.

Figure 1 shows comparative microhardness diagrams for several phases of hardened layers of 45, 40Kh13 and 27KhGT kinds of steel (boration was carried out at 890 ºC for 3 hours). Individual phases: 1 - FeB; 2 - Fe2B; 3 - alphase (α).

Для Цитирования:
Roshchupkin, Skripkina, Gadalov, Gubanov, Complex metal physical studies of structural steels after twocomponent boron-based diffusion hardening. Главный механик. 2021;9.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: