По всем вопросам звоните:

+7 495 274-22-22

Влияние гельминтов на развитие аллергических заболеваний (Обзор литературы)

Розенсон Р. И. НАО «Медицинский университет Астана», г. Нурсултан, Республика Казахстан
Тё А. В. НАО «Медицинский университет Астана», г. Нурсултан, Республика Казахстан

Гельминты, в том числе плоские и круглые черви, постоянно становились причиной ряда тяжелых заболеваний, однако в настоящее время появляется все больше данных о том, что степень воздействия гельминтов на организм человека обратно коррелирует с частотой аллергических заболеваний, опосредованных Th2-ответом. Соответственно, в последнее время наблюдается повышенный интерес к более детальному изучению данного вопроса, так как имеется возможность потенциального терапевтического использования гельминтов и их дериватов в отношении аллергических заболеваний.

Литература:

1. Bianca Sampaio Dotto Fiuza, Héllen Freitas Fonseca et al. Understanding Asthma and Allergies by the Lens of Biodiversity and Epigenetic Changes Front Immunol. 2021; 12: 623737. Published online 2021 Mar. doi: 10.3389/fimmu.2021.623737.

2. Logan AC, Jacka FN, Prescott SL. Immune-microbiota interactions: dysbiosis as a global health issue. Curr Allergy Asthma Rep. (2016) 16:1–9. doi: 10.1007/s11882-015-0590-5

3. Bordenstein SR, Theis KR. Host biology in light of the microbiome:ten principles of holobionts and hologenomes. PLoS Biol. (2015) 13:1–23. doi: 10.1371/journal.pbio.1002226

4. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. (2017) 548:43–51. doi: 10.1038/nature23292

5. Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS MicrobiolRev. (2008) 32:723–35. doi: 10.1111/j.1574–6976.2008.00123.x

6. Simon JC, Marchesi JR, Mougel C, Selosse MA. Host-microbiotainteractions: from holobiont theory to analysis. Microbiome. (2019) 7:1–5. doi: 10.1186/s40168-019-0619-4

7. Azad MB, Kozyrskyj AL. Perinatal programming of asthma:the role of gut microbiota. Clin Dev Immunol. (2012) 2012:932072. doi: 10.1155/2012/932072

8. Alashkar Alhamwe B, Alhamdan F, Ruhl A, Potaczek DP, Renz H. The role of epigenetics in allergy and asthma development. Curr Opin Allergy Clin Immunol. (2019) 20:48–55. doi: 10.1097/ACI.0000000000000598

9 Van der Kleij D, Latz E, Brouwers JFHM, Kruize YCM, Schmitz M, Kurt-Jones EA, et al. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J Biol Chem. (2002) 277:48122–9. doi: 10.1074/ jbc.M206941200

10. Magalhães KG, Almeida PE, Atella GC, Maya-Monteiro CM, CastroFaria-Neto HC, Pelajo Machado M, et al. Schistosomal-derived lysophosphatidylcholine are involved in eosinophil activation and recruitment through toll-like receptor-2-dependent mechanisms. J Infect Dis. (2010) 202:1369–79. doi: 10.1086/656477

11. Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. (2013) 343:57–83. doi: 10.1007/s00441-010-1049-6

12. Falcão PL, Correa-Oliveira R, Fraga LAO, Talvani A, Proudfoot AEI, Wells TNC, et al. Plasma concentrations and role of macrophage inflammatory protein-1α during chronic Schistosoma mansoni infection in humans. J Infect Dis. (2002) 186:1696–700. doi: 10.1086/345370

13. Souza ALS, Sousa-Pereira SR, Teixeira MM, Lambertucci JR, Teixeira AL. The role of chemokines in Schistosoma mansoni infection: insights from human disease and murine models. Mem Inst Oswaldo Cruz. (2006) 101:333–8. doi: 10.1590/S0074–02762006000900054

14. Cardoso LS, Oliveira SC, Góes AM, Oliveira RR, Pacífico LG, Marinho FV, et al. Schistosoma mansoni antigens modulate the allergic response in a murine model of ovalbumin-induced airway inflammation. Clin Exp Immunol. (2010) 160:266–74. doi: 10.1111/j.1365– 2249.2009.04084.x

15. Iwami D, Nonomura K, Shirasugi N, Niimi M. Immunomodulatory effects of eicosapentaenoic acid through induction of regulatory T cells. Int Immunopharmacol. (2011) 11:384–9. doi: 10.1016/j.intimp.2010.11.035

16. Thomas PG, Carter MR, Atochina O, Da’Dara AA, Piskorska D, McGuire E, et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a toll-like receptor 4-dependent mechanism. J Immunol. (2003) 171:5837–41. doi: 10.4049/jimmunol.171.11.5837

17. Durães FV, Carvalho NB, Melo TT, Oliveira SC, Fonseca CT. IL-12 and TNF-α production by dendritic cells stimulated with Schistosoma mansoni schistosomula tegument is TLR4- and MyD88-dependent. Immunol Lett. (2009) 125:72–7. doi: 10.1016/j. imlet.2009.06.004

18. Gaze S, McSorley HJ, Daveson J, Jones D, Bethony JM, Oliveira LM, et al. Characterising the mucosal and systemic immune responses to experimental human hookworm infection. PLoS Pathog. (2012) 8: e1002520. doi: 10.1371/journal.ppat.1002520

19. Croese J, Giacomin P, Navarro S, Clouston A, McCann L, Dougall A, et al. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J Allergy Clin Immunol. (2015) 135:508–16.e5. doi: 10.1016/j.jaci.2014.07.022

20. Hartgers FC, Obeng BB, Kruize YCM, Dijkhuis A, McCall M, Sauerwein RW, et al. Responses to malarial antigens are altered in helminth-infected children. J Infect Dis. (2009) 199:1528–35. doi: 10.1086/598687

21. Maizels RM, Yazdanbakhsh M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol. (2003) 3:733–44. doi: 10.1038/nri1183

22. Pulendran B, Artis D. New paradigms in type 2 immunity. Science. (2012) 337:431–5. doi: 10.1126/science.1221064

23. Medeiros M, Figueiredo JP, Almeida MC, Matos MA, Araújo MI, Cruz AA, et al. Schistosoma mansoni infection is associated with a reduced course of asthma. J Allergy Clin Immunol. (2003) 111:947–51. doi: 10.1067/mai.2003.1381

24. de Almeida TVVS, Fernandes JS, Lopes DM, Andrade LS, Oliveira SC, Carvalho EM, et al. Schistosoma mansoni antigens alter activation markers and cytokine profile in lymphocytes of patients with asthma. Acta Trop. (2017) 166:268–79. doi: 10.1016/j.actatropica.2016.12.002

25. Marinho FV, Alves CC, De Souza SC, Da Silva CMG, Cassali GD, Oliveira SC, et al. Schistosoma mansoni Tegument (Smteg) Induces IL10 and modulates experimental airway inflammation. PLoS ONE. (2016) 11: e0160118. doi: 10.1371/journal.pone.0160118

26. Cooper PJ. Interactions between helminth parasites and allergy. Curr Opin Allergy Clin Immunol. (2009) 9:29–37. doi: 10.1097/ACI.0b013e32831f44a6

27. Gonçales JP, Nobrega CGO, Nascimento WRC, Lorena VMB, Peixoto DM, Costa VMA, et al. Cytokine production in allergic and Trichuris trichiurainfected children from an urban region of the Brazilian northeast. Parasitol Int. (2020) 74:101918. doi: 10.1016/j. parint.2019.04.015

28. Alcântara-Neves NM, Badaró SJ, dos Santos MCA, Pontes-de-Carvalho L, Barreto ML. The presence of serum anti-Ascaris lumbricoides IgE antibodies and of Trichuris trichiura infection are risk factors for wheezing and/or atopy in preschool-aged Brazilian children. Respir Res. (2010) 11:1–9. doi: 10.1186/1465-9921-11-114

29. Cooper PJ, Chico ME, Platts-Mills TAE, Rodrigues LC, Strachan DP, Barreto ML. Cohort profile: the ecuador life (ECUAVIDA) study in esmeraldas province, ecuador. Int J Epidemiol. (2015) 44:1517–27. doi: 10.1093/ije/dyu128 30 Mehta RS, Rodriguez A, Chico M, Guadalupe I, Broncano N, Sandoval C, et al. Maternal geohelminth infections are associated with an increased susceptibility to geohelminth infection in children: a case-control study. PLoS Negl Trop Dis. (2012) 6:3–8. doi: 10.1371/ journal.pntd.0001753

31. Guadalupe I, Mitre E, Benitez S, Chico ME, Nutman TB, Cooper PJ. UKPMC funders group author manuscript newborns of mothers with ascariasis. Blood. (2010) 199:1846–50. doi: 10.1086/599214

32. Strunz EC, Addiss DG, Stocks ME, Ogden S, Freeman MC, Parasitologi D, et al. Associations between selective attention and soil-transmitted helminth infections, socioeconomic status, and physical fitness in disadvantaged children in Port Elizabeth, South Africa: An observational study. PLoS Negl Trop Dis. (2017) 8:1–9. doi: 10.1371/journal.pntd.0005573

33. Mu Y, McManus DP, Hou N and Cai P (2021) Schistosome Infection and Schistosome-Derived Products as Modulators for the Prevention and Alleviation of Immunological Disorders. Front. Immunol. 12:619776. doi: 10.3389/fimmu.2021.619776

34. Smits HH, Hammad H, Van Nimwegen M, Soullie T, Willart MA, Lievers E, et al. Protective effect of Schistosoma mansoni infection on allergic airway inflammation depends on the intensity and chronicity of infection. J Allergy Clin Immunol (2007) 120:932–40. doi: 10.1016/j.jaci.2007.06.009

35. Mo HM, Lei JH, Jiang ZW, Wang CZ, Cheng YL, Li YL, et al. Schistosoma japonicum infection modulates the development of allergen-induced airway inflammation in mice. Parasitol Res (2008) 103:1183–9. doi: 10.1007/s00436-008-1114-1

36. Layland LE, Straubinger K, Ritter M, Loffredo-Verde E, Garn H, Sparwasser T, et al. Schistosoma mansoni-mediated suppression of allergic airway inflammation requires patency and Foxp3+ Treg cells. PLoS Negl Trop Dis (2013) 7: e2379. doi: 10.1371/journal. pntd.0002379

37. Yang J, Zhao J, Yang Y, Zhang L, Yang X, Zhu X, et al. Schistosoma japonicum egg antigens stimulate CD4+ CD25+ T cells and modulate airway inflammation in a murine model of asthma. Immunology (2007) 120:8–18. doi: 10.1111/j.1365–2567.2006.02472.x

38. Cardoso LS, Oliveira SC, Goes AM, Oliveira RR, Pacifico LG, Marinho FV, et al. Schistosoma mansoni antigens modulate the allergic response in a murine model of ovalbumininduced airway inflammation. Clin Exp Immunol (2010) 160:266–74. doi: 10.1111/j.1365– 2249.2009.04084.x

39. Farias LP, Rodrigues D, Cunna V, Rofatto HK, Faquim-Mauro EL, Leite LC. Schistosoma mansoni venom allergen like proteins present differential allergic responses in a murine model of airway inflammation. PLoS Negl Trop Dis (2012) 6: e1510. doi: 10.1371/journal.pntd.0001510

40. Matucci A, Vultaggio A, Maggi E, Kasujee I. Is IgE or eosinophils the key player in allergic asthma pathogenesis? Are we asking the right question? Respir Res (2018) 19:113. doi: 10.1186/s12931-018-0813-0

41. Qiu S, Fan X, Yang Y, Dong P, Zhou W, Xu Y, et al. Schistosoma japonicum infection downregulates house dust mite-induced allergic airway inflammation in mice. PLoS One (2017) 12: e0179565. doi: 10.1371/journal.pone.0179565

42. Liu P, Li J, Yang X, Shen Y, Zhu Y, Wang S, et al. Helminth infection inhibits airway allergic reaction and dendritic cells are involved in the modulation process. Parasite Immunol (2010) 32:57–66. doi: 10.1111/j.1365–3024.2009.01161.x

43. Obieglo K, Schuijs MJ, Ozir-Fazalalikhan A, Otto F, Van Wijck Y, Boon L, et al. Isolated Schistosoma mansoni eggs prevent allergic airway inflammation. Parasite Immunol (2018) 40: e12579. doi: 10.1111/pim.12579

44. Marinho FV, Alves CC, De Souza SC, Da Silva CM, Cassali GD, Oliveira SC, et al. Schistosoma mansoni tegument (Smteg) induces IL-10 and modulates experimental airway inflammation. PLoS One (2016) 11: e0160118. doi:10.1371/journal.pone.0160118

45. Ren J, Hu L, Yang J, Yang L, Gao F, Lu P, et al. Novel T-cell epitopes on Schistosoma japonicum SjP40 protein and their preventive effect on allergic asthma in mice. Eur J Immunol (2016) 46:1203–13. doi: 10.1002/eji.201545775

46. Riedler J, Braun-Fahrländer C, Eder W, Schreuer M, Waser M, Maisch S, et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet. (2001) 358:1129–33. doi: 10.1016/S0140–6736 (01) 06252–3

47. Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthmaassociated differences in microbial composition of induced sputum. J Allergy Clin Immunol. (2013) 131:346–52.e1–3. doi: 10.1016/j.jaci.2012.11.013

48. von Mutius E, Braun-Fahrländer C, Schierl R, Riedler J, Ehlermann S, Maisch S, et al. Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clin Exp Allergy. (2000) 30:1230–4. doi: 10.1046/j.1365–2222.2000.00959.x

49. Leonardi-Bee J, Pritchard D, Britton J. Asthma and current intestinal parasite infection: systematic review and meta-analysis. Am J Respir Crit Care Med. (2006) 174:514–23. doi: 10.1164/rccm.200603-331OC

1. Bianca Sampaio Dotto Fiuza, Héllen Freitas Fonseca et al. Understanding Asthma and Allergies by the Lens of Biodiversity and Epigenetic Changes Front Immunol. 2021; 12: 623737. Published online 2021 Mar. doi: 10.3389/fimmu.2021.623737.

2. Logan AC, Jacka FN, Prescott SL. Immune-microbiota interactions: dysbiosis as a global health issue. Curr Allergy Asthma Rep. (2016) 16:1–9. doi: 10.1007/s11882-015-0590-5

3. Bordenstein SR, Theis KR. Host biology in light of the microbiome:ten principles of holobionts and hologenomes. PLoS Biol. (2015) 13:1–23. doi: 10.1371/journal.pbio.1002226

4. Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. (2017) 548:43–51. doi: 10.1038/nature23292

5. Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS MicrobiolRev. (2008) 32:723–35. doi: 10.1111/j.1574–6976.2008.00123.x

6. Simon JC, Marchesi JR, Mougel C, Selosse MA. Host-microbiotainteractions: from holobiont theory to analysis. Microbiome. (2019) 7:1–5. doi: 10.1186/s40168-019-0619-4

7. Azad MB, Kozyrskyj AL. Perinatal programming of asthma:the role of gut microbiota. Clin Dev Immunol. (2012) 2012:932072. doi: 10.1155/2012/932072

8. Alashkar Alhamwe B, Alhamdan F, Ruhl A, Potaczek DP, Renz H. The role of epigenetics in allergy and asthma development. Curr Opin Allergy Clin Immunol. (2019) 20:48–55. doi: 10.1097/ACI.0000000000000598

9 Van der Kleij D, Latz E, Brouwers JFHM, Kruize YCM, Schmitz M, Kurt-Jones EA, et al. A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization. J Biol Chem. (2002) 277:48122–9. doi: 10.1074/ jbc.M206941200

10. Magalhães KG, Almeida PE, Atella GC, Maya-Monteiro CM, CastroFaria-Neto HC, Pelajo Machado M, et al. Schistosomal-derived lysophosphatidylcholine are involved in eosinophil activation and recruitment through toll-like receptor-2-dependent mechanisms. J Infect Dis. (2010) 202:1369–79. doi: 10.1086/656477

11. Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. (2013) 343:57–83. doi: 10.1007/s00441-010-1049-6

12. Falcão PL, Correa-Oliveira R, Fraga LAO, Talvani A, Proudfoot AEI, Wells TNC, et al. Plasma concentrations and role of macrophage inflammatory protein-1α during chronic Schistosoma mansoni infection in humans. J Infect Dis. (2002) 186:1696–700. doi: 10.1086/345370

13. Souza ALS, Sousa-Pereira SR, Teixeira MM, Lambertucci JR, Teixeira AL. The role of chemokines in Schistosoma mansoni infection: insights from human disease and murine models. Mem Inst Oswaldo Cruz. (2006) 101:333–8. doi: 10.1590/S0074–02762006000900054

14. Cardoso LS, Oliveira SC, Góes AM, Oliveira RR, Pacífico LG, Marinho FV, et al. Schistosoma mansoni antigens modulate the allergic response in a murine model of ovalbumininduced airway inflammation. Clin Exp Immunol. (2010) 160:266–74. doi: 10.1111/j.1365– 2249.2009.04084.x

15. Iwami D, Nonomura K, Shirasugi N, Niimi M. Immunomodulatory effects of eicosapentaenoic acid through induction of regulatory T cells. Int Immunopharmacol. (2011) 11:384–9. doi: 10.1016/j.intimp.2010.11.035

16. Thomas PG, Carter MR, Atochina O, Da’Dara AA, Piskorska D, McGuire E, et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a toll-like receptor 4-dependent mechanism. J Immunol. (2003) 171:5837–41. doi: 10.4049/jimmunol.171.11.5837

17. Durães FV, Carvalho NB, Melo TT, Oliveira SC, Fonseca CT. IL-12 and TNF-α production by dendritic cells stimulated with Schistosoma mansoni schistosomula tegument is TLR4- and MyD88-dependent. Immunol Lett. (2009) 125:72–7. doi: 10.1016/j. imlet.2009.06.004

18. Gaze S, McSorley HJ, Daveson J, Jones D, Bethony JM, Oliveira LM, et al. Characterising the mucosal and systemic immune responses to experimental human hookworm infection. PLoS Pathog. (2012) 8: e1002520. doi: 10.1371/journal.ppat.1002520

19. Croese J, Giacomin P, Navarro S, Clouston A, McCann L, Dougall A, et al. Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. J Allergy Clin Immunol. (2015) 135:508–16.e5. doi: 10.1016/j.jaci.2014.07.022

20. Hartgers FC, Obeng BB, Kruize YCM, Dijkhuis A, McCall M, Sauerwein RW, et al. Responses to malarial antigens are altered in helminth-infected children. J Infect Dis. (2009) 199:1528–35. doi: 10.1086/598687

21. Maizels RM, Yazdanbakhsh M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol. (2003) 3:733–44. doi: 10.1038/nri1183

22. Pulendran B, Artis D. New paradigms in type 2 immunity. Science. (2012) 337:431–5. doi: 10.1126/science.1221064

23. Medeiros M, Figueiredo JP, Almeida MC, Matos MA, Araújo MI, Cruz AA, et al. Schistosoma mansoni infection is associated with a reduced course of asthma. J Allergy Clin Immunol. (2003) 111:947–51. doi: 10.1067/mai.2003.1381

24. de Almeida TVVS, Fernandes JS, Lopes DM, Andrade LS, Oliveira SC, Carvalho EM, et al. Schistosoma mansoni antigens alter activation markers and cytokine profile in lymphocytes of patients with asthma. Acta Trop. (2017) 166:268–79. doi: 10.1016/j. actatropica.2016.12.002

25. Marinho FV, Alves CC, De Souza SC, Da Silva CMG, Cassali GD, Oliveira SC, et al. Schistosoma mansoni Tegument (Smteg) Induces IL10 and modulates experimental airway inflammation. PLoS ONE. (2016) 11: e0160118. doi: 10.1371/journal.pone.0160118

26. Cooper PJ. Interactions between helminth parasites and allergy. Curr Opin Allergy Clin Immunol. (2009) 9:29–37. doi: 10.1097/ACI.0b013e32831f44a6

27. Gonçales JP, Nobrega CGO, Nascimento WRC, Lorena VMB, Peixoto DM, Costa VMA, et al. Cytokine production in allergic and Trichuris trichiurainfected children from an urban region of the Brazilian northeast. Parasitol Int. (2020) 74:101918. doi: 10.1016/j. parint.2019.04.015

28. Alcântara-Neves NM, Badaró SJ, dos Santos MCA, Pontes-de-Carvalho L, Barreto ML. The presence of serum anti-Ascaris lumbricoides IgE antibodies and of Trichuris trichiura infection are risk factors for wheezing and/or atopy in preschool-aged Brazilian children. Respir Res. (2010) 11:1–9. doi: 10.1186/1465-9921-11-114

29. Cooper PJ, Chico ME, Platts-Mills TAE, Rodrigues LC, Strachan DP, Barreto ML. Cohort profile: the ecuador life (ECUAVIDA) study in esmeraldas province, ecuador. Int J Epidemiol. (2015) 44:1517–27. doi: 10.1093/ije/dyu128 30 Mehta RS, Rodriguez A, Chico M, Guadalupe I, Broncano N, Sandoval C, et al. Maternal geohelminth infections are associated with an increased susceptibility to geohelminth infection in children: a case-control study. PLoS Negl Trop Dis. (2012) 6:3–8. doi: 10.1371/ journal.pntd.0001753

31. Guadalupe I, Mitre E, Benitez S, Chico ME, Nutman TB, Cooper PJ. UKPMC funders group author manuscript newborns of mothers with ascariasis. Blood. (2010) 199:1846–50. doi: 10.1086/599214

32. Strunz EC, Addiss DG, Stocks ME, Ogden S, Freeman MC, Parasitologi D, et al. Associations between selective attention and soil-transmitted helminth infections, socioeconomic status, and physical fitness in disadvantaged children in Port Elizabeth, South Africa: An observational study. PLoS Negl Trop Dis. (2017) 8:1–9. doi: 10.1371/journal.pntd.0005573

33. Mu Y, McManus DP, Hou N and Cai P (2021) Schistosome Infection and Schistosome-Derived Products as Modulators for the Prevention and Alleviation of Immunological Disorders. Front. Immunol. 12:619776. doi: 10.3389/fimmu.2021.619776

34. Smits HH, Hammad H, Van Nimwegen M, Soullie T, Willart MA, Lievers E, et al. Protective effect of Schistosoma mansoni infection on allergic airway inflammation depends on the intensity and chronicity of infection. J Allergy Clin Immunol (2007) 120:932–40. doi: 10.1016/j.jaci.2007.06.009

35. Mo HM, Lei JH, Jiang ZW, Wang CZ, Cheng YL, Li YL, et al. Schistosoma japonicum infection modulates the development of allergen-induced airway inflammation in mice. Parasitol Res (2008) 103:1183–9. doi: 10.1007/s00436-008-1114-1

36. Layland LE, Straubinger K, Ritter M, Loffredo-Verde E, Garn H, Sparwasser T, et al. Schistosoma mansoni-mediated suppression of allergic airway inflammation requires patency and Foxp3+ Treg cells. PLoS Negl Trop Dis (2013) 7: e2379. doi: 10.1371/journal. pntd.0002379

37. Yang J, Zhao J, Yang Y, Zhang L, Yang X, Zhu X, et al. Schistosoma japonicum egg antigens stimulate CD4+ CD25+ T cells and modulate airway inflammation in a murine model of asthma. Immunology (2007) 120:8–18. doi: 10.1111/j.1365–2567.2006.02472.x

38. Cardoso LS, Oliveira SC, Goes AM, Oliveira RR, Pacifico LG, Marinho FV, et al. Schistosoma mansoni antigens modulate the allergic response in a murine model of ovalbumininduced airway inflammation. Clin Exp Immunol (2010) 160:266–74. doi: 10.1111/j.1365– 2249.2009.04084.x

39. Farias LP, Rodrigues D, Cunna V, Rofatto HK, Faquim-Mauro EL, Leite LC. Schistosoma mansoni venom allergen like proteins present differential allergic responses in a murine model of airway inflammation. PLoS Negl Trop Dis (2012) 6: e1510. doi: 10.1371/journal.pntd.0001510

40. Matucci A, Vultaggio A, Maggi E, Kasujee I. Is IgE or eosinophils the key player in allergic asthma pathogenesis? Are we asking the right question? Respir Res (2018) 19:113. doi: 10.1186/s12931-018-0813-0

41. Qiu S, Fan X, Yang Y, Dong P, Zhou W, Xu Y, et al. Schistosoma japonicum infection downregulates house dust mite-induced allergic airway inflammation in mice. PLoS One (2017) 12: e0179565. doi: 10.1371/journal.pone.0179565

42. Liu P, Li J, Yang X, Shen Y, Zhu Y, Wang S, et al. Helminth infection inhibits airway allergic reaction and dendritic cells are involved in the modulation process. Parasite Immunol (2010) 32:57–66. doi: 10.1111/j.1365–3024.2009.01161.x

43. Obieglo K, Schuijs MJ, Ozir-Fazalalikhan A, Otto F, Van Wijck Y, Boon L, et al. Isolated Schistosoma mansoni eggs prevent allergic airway inflammation. Parasite Immunol (2018) 40: e12579. doi: 10.1111/pim.12579

44. Marinho FV, Alves CC, De Souza SC, Da Silva CM, Cassali GD, Oliveira SC, et al. Schistosoma mansoni tegument (Smteg) induces IL-10 and modulates experimental airway inflammation. PLoS One (2016) 11: e0160118. doi:10.1371/journal.pone.0160118

45. Ren J, Hu L, Yang J, Yang L, Gao F, Lu P, et al. Novel T-cell epitopes on Schistosoma japonicum SjP40 protein and their preventive effect on allergic asthma in mice. Eur J Immunol (2016) 46:1203–13. doi: 10.1002/eji.201545775

46. Riedler J, Braun-Fahrländer C, Eder W, Schreuer M, Waser M, Maisch S, et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet. (2001) 358:1129–33. doi: 10.1016/S0140–6736 (01) 06252–3

47. Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthmaassociated differences in microbial composition of induced sputum. J Allergy Clin Immunol. (2013) 131:346–52.e1–3. doi: 10.1016/j.jaci.2012.11.013

48. von Mutius E, Braun-Fahrländer C, Schierl R, Riedler J, Ehlermann S, Maisch S, et al. Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clin Exp Allergy. (2000) 30:1230–4. doi: 10.1046/j.1365–2222.2000.00959.x

49. Leonardi-Bee J, Pritchard D, Britton J. Asthma and current intestinal parasite infection: systematic review and meta-analysis. Am J Respir Crit Care Med. (2006) 174:514–23. doi: 10.1164/rccm.200603-331OC

Воздействие на человека различных организмов, включая гельминтов, может вызывать определенные эпигенетические изменения, которые влияют на работу иммунной системы, повышая риск развития ряда воспалительных заболеваний. Однако последние исследования показали, что такие изменения могут быть как фактором риска, так и защитным фактором в отношении аллергических заболеваний. Поэтому изучение взаимосвязи между гельминтозами и аллергическими заболеваниями является актуальным вопросом в настоящее время.

Микроорганизмы являются самой древней и многочисленной формой жизни на Земле, вносящей вклад в эволюционное развитие и функционирование всех более сложных многоклеточных организмов [1, 2]. С первых дней жизни они взаимодействуют и устанавливают внутренние симбиотические отношения с организмом человека, что позволяет им развиваться как единое целое. Так, согласно данной концепции, вследствие постоянного влияния экологических и эволюционных факторов система «хозяин-симбионт» развивается в соответствии с правилом естественного отбора [3–5]. Поэтому понимание взаимосвязей и взаимодействий между микроорганизмами и паразитами с клетками и тканями организма человека в рамках целостного подхода имеет первостепенное значение [6] и может представлять собой практическое значение для решения таких сложных проблем, как антибиотикорезистентность, аллергические заболевания и др. [7, 8].

В зависимости от стадии жизненного цикла паразитов иммунная система человека отвечает на разные антигены. Так, многие молекулы, выделяемые взрослыми кишечными червями, известные, как «экскреторные / секреторные антигены» (ES), могут оказывать ряд эффектов на иммунные клетки хозяина. Данные молекулы активируют базофилы, эозинофилы, тучные клетки, Тh-2 и CD4+ клетки и стимулируют выработку цитокинов.

К примеру, различные классы липидов, экстрагированных из яиц шистосом и взрослых особей, способны стимулировать выработку некоторых воспалительных цитокинов (IL-6, IL-8, IL-10, IL-12, TNF-α). Более того, шистосомный лизофосфатидилсерин посредством TLR2 стимулирует активацию дендритных клеток с последующим созреванием Treg-клеток, продуцирующих IL-10, а шистосомный лизофосфатидилхолин in vivo был способен вызывать продукцию цитокинов и активировать эозинофилы потенциально за счет распознавания TLR2, что приводит к их дегрануляции и выбросу матриксных металлопротеиназ, лейкотриенов и др. [9,10,11]. Было показано, что у пациентов, инфицированных шистосомами, отмечается более высокая концентрация эотаксинов CCL3, CCL5 и CCL11, которые способствуют привлечению гранулоцитов и опосредуют гранулематозный ответ [12,13].

Для Цитирования:
Розенсон Р. И., Тё А. В., Влияние гельминтов на развитие аллергических заболеваний (Обзор литературы). Терапевт. 2021;10.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: