По всем вопросам звоните:

+7 495 274-22-22

УДК: 616.8 DOI:10.33920/med-01-2105-03

Subcortical brain lesions in different phenotypes of multiple sclerosis and their prognostic significance

Mariya Olegovna Poplyak neurologist, Saint-Petersburg, City polyclinic № 102, 197341, Saint-Petersburg, Koroleva avenue, 5, mariiapopliak@mail.ru, https://orcid.org/0000-0003-4239-0361
Artem Gennad’evich Trufanov M. D., PhD, assistant professor of department of nervous diseases, Military-medical academy n.a. S. M. Kirov, 194044, Saint-Petersburg, akademica Lebedeva street, 6, trufanovart@gmail.com, https://orcid.org/0000-0003-2905-9287
Aleksandr Vasil’evich Temniy resident doctor, Military-medical academy n.a. S. M. Kirov, 194044, Saint-Petersburg, akademica Lebedeva street, 6, crzdfop@gmail.com, https://orcid.org/0000-0001-8813-5708
Aleksandr Yur’evich Efimtsev сandidate of medical sciences, associate professor of the department of radiation diagnostics and medical imaging, Almazov National Medical Research Centre, 197341, Saint-Petersburg, Akkuratova street, 2, atralf@mail.ru, https://orcid.org/0000-0003-2249-1405
Oleg Borisovich Chakchir candidate of pharmaceutical sciences, head of the laboratory of nanobiotechnologies, University under the interparliamentary assembly of Eurasec, 194044, Saint-Petersburg, Smoljachkova street, 14/1, newnanobiotech@gmail.com, https://orcid.org/0000-0003-3853-9186
Alexei Vladimirovich Miheev candidate of medical sciences reseacher of the laboratory of nanobiotechnologies, University under the interparliamentary assembly of Eurasec, 194044, Saint-Petersburg, Smoljachkova street, 14/1, https://orcid.org/0000-0003-3853-9186, alexeimiheev331@gmail.com
Dmitrij Igorevich Skulyabin candidate of medical sciences associate professor of the department of nervous diseases, Military-medical academy n.a. S. M. Kirov, 194044, Saint-Petersburg, akademica Lebedeva street, 6, dskulyabin@gmail.com, https://orcid.org/0000-0001-5379-2863
Evgeniya Viktorovna Kuznetsova lecturer at the department of organization of provision of troops (forces) with medical equipment, Military-medical academy n.a. S.M. Kirov, 194044, Saint-Petersburg, akademica Lebedeva street, 6, evgecha-kuz@yandex.ru, https://orcid.org/0000-0001-7612-792X
Gennady Nikolaevich Bisaga doctor of medical sciences, professor of the department of nervous diseases, Military-medical academy n.a. S. M. Kirov, 194044, Saint-Petersburg, akademica Lebedeva street, 6, bisaga@yandex.ru, https://orcid.org/0000-0002-1848-8775
Igor’ Vyacheslavovich Litvinenko doctor of medical sciences, head of the department of nervous diseases, Military-medical academy n.a. S. M. Kirov, 194044, Saint-Petersburg, akademica Lebedeva street, 6, litvinenkoiv@rambler.ru, https://orcid.org/0000-0001-8988-3011
Miroslav Mihailovich Odinak corresponding member of the Russian Academy of Sciences, doctor of medical sciences, professor of the department of nervous diseases, Military-medical academy n.a. S. M. Kirov, 194044, Saint-Petersburg, akademica Lebedeva street, 6, odinak@rambler.ru, https://orcid.org/0000-0002-7314-7711

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects the central nervous system in most young adults and leads to inevitable disability. Objective: to determine the degree of involvement of subcortical structures in the pathological process in multiple sclerosis and evaluate their prognostic significance. Eighty patients with relapsing-remitting (n=48) and secondary-progressive (n=32) MS phenotypes were examined; 20 healthy subjects of corresponding age and sex constituted the control group. Clinical assessment was performed using the scales: EDSS, MSSS, MMSE, FAB, MoCA, SDMT, Beck’s test, and HADS. All patients underwent brain MRI and MR morphometry using Freesurfer 6.0 software. In patients with multiple sclerosis, the neurodegenerative process is represented by decreased volumes of the caudate nucleus and shell, increased volume of the 3rd and lateral ventricles, increased volume of CSF, and the presence of «black holes». The volume of the 3rd and lateral ventricles and the volume of the CSF (total neurodegeneration) depends on the duration of the disease. The degree of disability (EDSS) is influenced by the volumes of the caudate nucleus, globus pallidus, nucleus accumbens, and brainstem. In turn, cognitive decline is affected by the volume of the thalamus, basal nuclei, brainstem, volume of the lateral ventricles, and decreased volumes of the white matter and cerebellar cortex. Thus, dynamic assessment and observation of the subcortical brain volume using MR morphometry can act as a prognostic factor in the transition of the remitting relapsing phenotype of multiple sclerosis into a secondary progressive phenotype.

Литература:

1. Barhatova V.P., Zavalishin I.A., Hajdarov B.T. Neurotransmitters in the communication mechanisms between the nervous and immune systems in multiple sclerosis. Zhurnal nevrologii i p sikhiatrii imeni S.S. Korsakova (S.S. Korsakov Journal of Neurology and Psychiatry). 1998; 11: 51–54. (in Russian)

2. Gusev E.I., Bojko A.N. Multiple sclerosis: from the study of immunopathogenesis to new treatments. M.: Gubernskajamedicina (M.: The provincial medicine). 2001, 101. (in Russian)

3. Bisaga G.N. Multiple sclerosis: from morphology to pathogenesis. G.N. Bisaga. Saint-Petersburg. 2015, 104. (in Russian)

4. Beecham, A. H., Patsopoulos, N. A., Xifara, D. K., Davis, M. F., Kemppinen, A., Cotsapas, C., Shah, T. S., Spencer, C., Booth, D., Goris, A., Oturai, A., Saarela, J., Fontaine, B., Hemmer, B., Martin, C., Zipp, F., D’Alfonso, S., Martinelli-Boneschi, F., Taylor, B., McCauley, J.L. International Multiple Sclerosis Genetics Consortium (IMSGC) (2013). Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature genetics, 45 (11), 1353–1360. C:\Users\artem\ Desktop\https://doi.org/10.1038/ng.2770.

5. Shmidt, T. E., Jahno N.N. Multiple Sclerosis: a guide for doctors. M.: MEDpress-inform. 2017, 280. (in Russian)

6. Compston, A., McDonald, I., Noseworthy, J., Lassmann, H., Miller, D. H., Smith, K. J., Wekerle, H., Confavreux, C. McAlpine’sMultiple Sclerosis: 4th Edition. — Elsevier, 2006; 982 p.

7. Kawachi, I., Lassmann, H. Neurodegeneration in multiple sclerosis and neuromyelitis optica (2017). J NeurolNeurosurg Psychiatry, 88 (2), 137–145. doi: 10.1136/jnnp-2016–313300. PMID: 27671902.

8. Friese, M. A., Schattling, B., Fugger, L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis (2014). Nat Rev Neurol, 10 (4), 225–38. doi: 10.1038/nrneurol.2014.37. PMID: 24638138.

9. Lassmann, H. Multiple Sclerosis Pathology (2018). Cold Spring HarbPerspect Med, 8 (3), a028936. doi: 10.1101/ cshperspect.a028936. PMID: 29358320. PMCID: PMC5830904.

10. Capone, F., Collorone, S., Cortese, R., Di Lazzaro, V., Moccia, M. Fatigue in multiple sclerosis: The role of thalamus (2020). MultScler, 26 (1), 6–16. doi: 10.1177/1352458519851247. PMID: 31138052.

11. Eshaghi, A., Marinescu, R. V., Young, A. L., Firth, N. C., Prados, F., Jorge Cardoso, M., Tur, C., De Angelis, F., Cawley, N., Brownlee, W. J., De Stefano, N., Laura Stromillo, M., Battaglini, M., Ruggieri, S., Gasperini, C., Filippi, M., Rocca, M. A., Rovira, A., Sastre-Garriga, J., Geurts, J.J. G., Vrenken, H., Wottschel, V., Leurs, C. E., Uitdehaag, B., Pirpamer, L., Enzinger, C., Ourselin, S., Gandini Wheeler-Kingshott, C. A., Chard, D., Thompson, A. J., Barkhof, F., Alexander, D. C., Ciccarelli, O. Progression of regional grey matter atrophy in multiple sclerosis. Brain (2018), 141 (6):1665–1677. doi: 10.1093/brain/awy088. PMID: 29741648. PMCID: PMC5995197.

12. Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: an Expanded Disability Status Scale (EDSS) (1983). Neurology, 33: 1444–1452. doi:10.1212/wnl.33.11.1444. PMID: 6685237.

13. Roxburgh, R.H. S. R., Seaman, S. R., Masterman, T. et al. Multiple sclerosis severityscore: using disability and disease duration to rate disease severity (2005). Neurology, 64: 1144–1151. doi: 10.1212/01.wnl.0000156155.19270. F8. PMID:15824338.

14. Folstein, M. F., Folstein, S. E., McHugh, P. R. «Mini-mental state». A practical method for grading the cognitive state of patients for the clinician (1975). J Psychiatr Res, 12: 189–198. doi: 10.1016/0022–3956 (75) 90026–6. PMID: 1202204.

15. Dubois, B., Slachevsky, A., Litvan, I., Pillon, B. The FAB: a Frontal Assessment Battery at bedside (2000). Neurology, 55: 1621–1626. doi: 10.1212/ wnl.55.11.1621. PMID: 11113214.

16. Nasreddine, Z. S., Phillips, N. A., Bédirian, V. et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment (2005). J Am GeriatrSoc, 53: 695–699. doi: 10.1111/j.1532–5415.2005.53221.x. PMID:15817019.

17. Langdon, D. W., Amato, M. P., Boringa, J. et al. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) (2012). MultScler, 18: 891–898. doi: 10.1177/1352458511431076. PMID: 22190573.

18. Beck, A. T., Ward, C. H., Mendelson, M. et al. An inventory for measuring depression (1961). Arch Gen Psychiatry,4: 561–571. doi: 10.1001/archpsyc. 1961.01710120031004. PMID: 13688369.

19. Zigmond, A. S., Snaith, R.P. The hospital anxiety and depression scale (1983). Acta PsychiatrScand, 67: 361–370. doi: 10.1111/j.1600–0447.1983.tb09716.x. PMID: 6880820.

20. Assaf, Y., Pasternak, O. Diffusion Tensor Imaging (DTI) — based white matter mapping in brain research: a review (2008). J MolNeurosci, 34: 51–61. doi: 10.1007/s12031-007-0029-0. PMID: 18157658.

21. O’Donnell, L. J., Westin, C.F. An introduction to diffusion tensor image analysis (2011). NeurosurgClin N Am, 22: 185–196. doi: 10.1016/j.nec.2010.12.004. PMID: 21435570.

22. Alexander, A. L., Lee, J. E., Lazar, M., Field, A.S. Diffusion tensor imaging of the brain (2007). Neurotherapeutics, 4: 316–329. doi: 10.1016/j.nurt.2007.05.011. PMID: 17599699.

23. Fischl, B. FreeSurfer (2012). Neuroimage, 62: 774–781. doi: 10.1016/j.neuroimage. 2012.01.021. PMID: 22248573.

24. Fama, R., & Sullivan, E.V. Thalamic structures and associated cognitive functions: Relations with age and aging (2015). Neuroscience and biobehavioral reviews, 54: 29–37. doi: 10.1016/j. neubiorev. 2015. 03. 00. PMID: 25862940.

25. Matías-Guiu, J. A., Cortés-Martínez, A., Montero, P., et al. Identification of Cortical and Subcortical Correlates of Cognitive Performance in Multiple Sclerosis Using Voxel-Based Morphometry (2018). Front Neurol, 9:920. doi:10.3389/ fneur.2018.00920. PMID: 30420834.

26. Minagar, A., Barnett, M. H., Benedict, R. H., et al. The thalamus and multiple sclerosis: modern views on pathologic, imaging, and clinical aspects (2013). Neurology, 80 (2):210–219.doi:10.1212/WNL.0b013e31827b910b. PMID:23296131.

27. Tao, G., Datta, S., He, R., Nelson, F., Wolinsky, J. S., Narayana, P.A. Deep gray matter atrophy in multiple sclerosis: a tensor based morphometry (2009). J Neurol Sci., 282 (1-2):39–46. doi:10.1016/j.jns.2008.12.035. PMID: 19168189.

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects the CNS and leads to disability. Women suffer more often, and the disease begins earlier than in men. The disease is common among the European race. People living in Northern Europe, the United States, Southern Canada, Australia, New Zealand (more than 50 cases per 100,000 people) have an increased risk of developing the disease. More often the disease develops between 20 and 42 years of age [1–3].

Various combinations of genetic, epigenetic, exogenous, and endogenous factors contribute to the development of the disease, the interaction of which triggers the process of demyelination and neurodegeneration. Approximately 110 different polymorphisms at 103 loci outside the MHC genes are identified in different ethnic groups. The largest number of positive couplings is in the 3q21–24, 6p21 region [4]. Among exogenous factors, the following are considered: vitamin D3 deficiency, consumption of animal proteins and fats, Epstein-Barr virus, herpes 6A, retroviruses. Endogenous factors include endocrine disorders, changes in the composition of the microbiome, biotin levels, reduced activity of the dopaminergic system. The influence of environmental and social factors is of great importance. Many studies are based on the concept of interaction between environmental triggers and genetic susceptibility factors. The connection of MS with increased consumption of proteins and fats in animals, exposure to heavy metals (especially zinc, fat triaryl phosphate), with the presence of arsenic, lead, manganese, carbon monoxide, aluminium, molybdenum in the environment has been revealed [5–6]

Currently, the neurodegenerative component of multiple sclerosis is attracting more and more researchers’ attention [7–8]. One of the criteria for the onset of the neurodegenerative phase of the disease course is the patient’s transition from the remitting phenotype of the disease to the secondary progressive phenotype, in which there is already a significant disability of the patient and a sharp reduction in the possibilities of drug therapy [9].

Для Цитирования:
Mariya Olegovna Poplyak, Artem Gennad’evich Trufanov, Aleksandr Vasil’evich Temniy, Aleksandr Yur’evich Efimtsev, Oleg Borisovich Chakchir, Alexei Vladimirovich Miheev, Dmitrij Igorevich Skulyabin, Evgeniya Viktorovna Kuznetsova, Gennady Nikolaevich Bisaga, Igor’ Vyacheslavovich Litvinenko, Miroslav Mihailovich Odinak, Subcortical brain lesions in different phenotypes of multiple sclerosis and their prognostic significance. Вестник неврологии, психиатрии и нейрохирургии. 2021;5.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: