По всем вопросам звоните:

+7 495 274-22-22

УДК: 615.28 DOI:10.33920/med-02-2101-06

Применение нанотехнологий для противодействия резистентности к противомикробным препаратам

Орейф Эслам Шаабан Мохамед Гази Российский университет дружбы народов (РУДН), Институт бионанотехнологий, Россия, ФИЦ Биотехнологии РАН, Институт биохимии им. А.Н. Баха, Россия, Университет Танта, фармацевтический факультет, Египет
Эльманахлы Мохаммед Эмам Российский университет дружбы народов (РУДН), Институт бионанотехнологий, Россия
Ризк Марко Джордж Российский университет дружбы народов (РУДН), Институт бионанотехнологий, Россия

Одна из основных проблем со здоровьем в настоящее время - развитие устойчивости к противомикробным препаратам. В настоящее время проводятся испытания по борьбе с устойчивостью, развиваемой патогенами. Эти испытания включают рассмотрение нетрадиционных противомикробных агентов, разработку новых антибиотиков или составов и модификацию традиционных противомикробных агентов. Нанотехнологии все чаще применяются в медицинской практике в нашей жизни, поэтому они могут стать потенциальным ответом на проблему противомикробной резистентности, что может стимулировать инновации и создать новое поколение противомикробных препаратов. Из-за наноразмеров и уникальных физико-химических свойств наночастиц, нанотехнологии могут обеспечивать новые механизмы противомикробного действия. В этой обзорной статье резюмируются механизмы действия противомикробных препаратов и различные методы устойчивости, развиваемые бактериальными патогенами. Затем мы подробно рассмотрим использование противомикробных НЧ и систем доставки антибиотиков в качестве новых инструментов для решения текущих проблем в лечении инфекционных заболеваний.

Литература:

1. Wright GD. Q&A: Antibiotic resistance: where does it come from and what can we do about it? BMC biology. 2010;8 (1):123.

2. Thomson R.B. Commentary: One Small Step for the Gram Stain, One Giant Leap for Clinical Microbiology. Journal of Clinical Microbiology. 2016;54 (6):1416–7.

3. Taubes G. The bacteria fight back. American Association for the Advancement of Science; 2008.

4. Miesel L, Greene J, Black TA. Genetic strategies for antibacterial drug discovery. Nature Reviews Genetics. 2003;4 (6):442–56.

5. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews. 2010;74 (3):417–33.

6. Kumar SG, Adithan C, Harish B, Sujatha S, Roy G, Malini A. Antimicrobial resistance in India: A review. Journal of natural science, biology, and medicine. 2013;4 (2):286.

7. Tornimbene B, Eremin S, Escher M, Griskeviciene J, Manglani S, Pessoa-Silva CL. WHO Global Antimicrobial Resistance Surveillance System early implementation 2016–17. The Lancet Infectious diseases. 2018;18 (3):241.

8. Furuya EY, Lowy FD. Antimicrobial-resistant bacteria in the community setting. Nature Reviews Microbiology. 2006;4 (1):36–45.

9. Perichon B. courvalin P. VanA-type vancomycin-resistant Staphylococcus aureus Antimicrob Agents Chemother. 2009;53 (11):4580–7.

10. Metz M, Shlaes DM. Eight more ways to deal with antibiotic resistance. Antimicrobial agents and chemotherapy. 2014;58 (8):4253–6.

11. Taylor PW, Stapleton PD, Luzio JP. New ways to treat bacterial infections. Drug Discovery Today. 2002;7 (21):1086–91.

12. Huh AJ, Kwon YJ. «Nanoantibiotics»: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of controlled release. 2011;156 (2):128–45.

13. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine. 2017;12:1227.

14. Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clinical chemistry. 2007;53 (11):2002–9.

15. Look M, Bandyopadhyay A, Blum JS, Fahmy TM. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Advanced drug delivery reviews. 2010;62 (4-5):378–93.

16. de la Escosura‐Muñiz A, Merkoçi A. A nanochannel/nanoparticle‐based filtering and sensing platform for direct detection of a cancer biomarker in blood. Small. 2011;7 (5):675–82.

17. Matsumura Y, Yoshikata K, Kunisaki S-i, Tsuchido T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and environmental microbiology. 2003;69 (7):4278–81.

18. Bhattacharya R, Mukherjee P. Biological properties of «naked» metal nanoparticles. Advanced drug delivery reviews. 2008;60 (11):1289–306.

19. Chamundeeswari M, Sobhana SL, Jacob JP, Kumar MG, Devi MP, Sastry TP, et al. Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnology and applied biochemistry. 2010;55 (1):29–35.

20. Chorianopoulos N, Tsoukleris D, Panagou E, Falaras P, Nychas G-J. Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing. Food Microbiology. 2011;28 (1):164–70.

21. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends in biotechnology. 2012;30 (10):499–511.

22. Jin T, Sun D, Su J, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157: H7. Journal of food science. 2009;74 (1):M46‑M52.

23. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano letters. 2006;6 (4):866–70.

24. Zhang L, Gu F, Chan J, Wang A, Langer R, Farokhzad O. Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology & therapeutics. 2008;83 (5):761–9.

25. Zhang L, Granick S. How to stabilize phospholipid liposomes (using nanoparticles). Nano letters. 2006;6 (4):694–8.

26. Zhang L, Pornpattananangkul D, Hu C–M, Huang C–M. Development of nanoparticles for antimicrobial drug delivery. Current medicinal chemistry. 2010;17 (6):585–94.

27. Onyeji C, Nightingale C, Marangos M. Enhanced killing of methicillin- resistantStaphylococcus aureus in human macrophages by liposome-entrapped vancomycin and teicoplanin. Infection. 1994;22 (5):338–42.

28. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed invivo delivery of drugs and vaccines. Journal of nanobiotechnology. 2011;9 (1):55.

29. Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proceedings of the National Academy of Sciences. 2008;105 (7):2586–91.

30. Das B, Patra S. Antimicrobials: Meeting the challenges of antibiotic resistance through nanotechnology. Nanostructures for antimicrobial therapy: Elsevier; 2017. p. 1–22.

31. Grayson SM, Frechet JM. Convergent dendrons and dendrimers: from synthesis to applications. Chemical reviews. 2001;101 (12):3819–68.

32. Ficai A, Grumezescu AM. Nanostructures for antimicrobial therapy: Elsevier; 2017.

Bacteria can be classified, according to the ability of their cell walls to absorb Gram stain, into Gram positive bacteria possessing thick cell wall and gram negative bacteria possessing thin cell wall and an outer membrane [2]. The commercial production of antibiotics started with the use of penicillin in the late of 1940s and it was great success for many years [3]. Antibiotics can be classified according to their spectrum on bacteria into broad spectrum, works against gram positive and gram negative and narrow spectrum. Also they are classified according to their mechanism of action or the targets. For examples, the main targets for antibiotics are cell wall, cell membrane, protein synthesis and nucleic acid synthesis. Beta lactams and glycoproteins can interfere with the synthesis of cell walls. Major classes of antibiotics that target protein synthesis include the macrolides and aminoglycosides. Antibiotic classes such as quinolones inhibit synthesis of nucleic acid synthesis of bacteria. Other antibiotics, such as the lipopeptides and polymyxins can disrupt the cell membrane of bacteria [4]. Inappropriate antibiotic use was one of the main causes of the evolution of multidrug- resistant pathogens especially in developed and developing countries [5]. The problem is graver in developing nations because of ease availability, inappropriate high doses of antibiotics in and cost constraints to replace older antibiotics with new expensive antibiotics increase the probability of antimicrobialresistant strains [6]. In 2017, the WHO Global Antimicrobial Surveillance System has reported that antibiotic resistance is a worldwide challenge [7].

Development of antimicrobial resistance occurs via various mechanisms. Briefly, the primary mechanisms include inactivation of the antibiotic by the bacterial pathogen, changing of the target site of the antibiotic, alteration of a metabolic pathway to abolish the effect of the antibiotic, and reducing accumulation of the drug by minimizing or inhibiting its entry or maximizing clearance from the cell (efflux effect) as shown in figure 1. It is worth to mention that resistance mechanisms exhibited by bacteria may be intrinsic mechanism such as lacking of oxidative metabolism which prevents drug uptake or the presence of an outer lipid membrane in the Gram-negative bacteria cell wall which prevents entry of glycopeptides [8]. Also, the resistance mechanism may be acquired whereby the resistant bacteria (donator) donate DNA, typically integrated into a plasmid and codes for that resistance mechanism, to susceptible bacteria (recipient). This DNA is retained in the recipient cell, within a plasmid or is transposed into the genome, and expression results in organisms that now harbor resistance to the given antibiotic. Examples of required resistance include the acquisition of code for the production of lactamases that degrade beta-lactam antibiotics [9], or transposable elements such as the transposon Tn1546 which confers VanA type resistance to vancomycin in the Enterococci and in S.aureus.

Для Цитирования:
Орейф Эслам Шаабан Мохамед Гази, Эльманахлы Мохаммед Эмам, Ризк Марко Джордж, Применение нанотехнологий для противодействия резистентности к противомикробным препаратам. Врач скорой помощи. 2021;1.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: