По всем вопросам звоните:

+7 495 274-22-22

Отогреваем землю, или Методы прогрева мерзлых грунтов при производстве земляных работ

Как известно, в зимнее время грунт порой промерзает так, что его не берет даже экскаватор и гидромолот. К тому же в населенных пунктах в грунте находятся подземные коммуникации, которые могут быть повреждены при ударных воздействиях на грунт. Поэтому мерзлый грунт должен быть предварительно отогрет. Существует ряд способов прогрева мерзлого грунта. Каждый из них имеет свои достоинства и недостатки.

Способы оттаивания мерзлого грунта классифицируются по направлению подачи тепла в грунт и виду используемого теплоносителя.

Оттаивание сверху вниз. Этот способ наименее эффективный, так как источник тепла в этом случае размещается в зоне холодного воздуха, что вызывает большие потери тепла. В то же время его достаточно легко и просто осуществить, он требует минимальных подготовительных работ, в связи с чем часто применяется на практике.

Оттаивание снизу вверх предполагает бурение скважин, в которые опускаются источники тепла. Расход энергии в этом случае минимальный, т. к. благодаря слою грунта потерь тепла практически нет. Некоторые специалисты даже считают, что не требуется утеплять сверху обрабатываемую площадь слоем опилок и тому подобных материалов. Главный недостаток этого способа — трудоемкие подготовительные операции, это ограничивает область его применения.

Оттаивание по радиальному направлению. В этом случае тепло распространяется в грунте перпендикулярно от вертикально погруженных в грунт источников энергии. Этот способ по экономическим показателям занимает промежуточное положение между двумя ранее описанными, а для осуществления также требует значительных подготовительных работ.

Независимо от принятого способа отогреваемая поверхность предварительно очищается от снега, льда и верхних покровов основания (асфальт, бетон).

Термоэлектрические маты

Маты термоэлектрические (термоматы) — это инфракрасные нагреватели, многофункциональное и экологичное вспомогательное строительное оборудование, они позволяют эффективно прогревать грунт и застывающий бетон при небольшом потреблении энергии, поддерживают заданную температуру в автоматическом режиме, а некоторые модели могут использоваться для растапливания снега и льда. В конструкцию термоматов входят греющая пленка, излучающая тепо в инфракрасном диапазоне, с теплоизоляцией, представляющая собой многослойный «сэндвич» из полипропилена или пенополиэтилена толщиной 6–10 мм, ограничители для поддержания постоянной температуры и грязеводонепроницаемая ПВХоболочка с герметично запаянными швами, устойчивая к неблагоприятным атмосферным воздействиям. Выпускаются в виде прямоугольных полотнищ различной площади и рулонов значительной длины.

Возможности термоматов. Многие западные и отечественные специалисты считают, что прогрев грунта термоэлектрическими и термоизоляционными матами — оптимальная технология для оттаивания больших площадей мерзлого грунта и льда. Они могут работать от однофазных источников электроэнергии с напряжением 220 В. Работают лучше, чем солнце в весенний день, — 24 часа 7 дней в неделю. Способны нагревать грунт до температур на 50–80 °С выше температуры окружающего воздуха и прогревают сильно промерзший грунт на глубину до 450–800 мм за 20–72 часа работы в зависимости от температуры воздуха и свойств грунта. Снег и лед превращаются в воду, которая впитывается в грунт и размораживает нижележащие слои грунта. Они способны разморозить замерзшие канализационные трубы на глубине до 2,5 м. Допустимая температура работы термоматов может составлять до −35 °С. Удельная мощность, излучаемая термоматами, может достигать нескольких сот ватт на 1 м2. За счет проникающих свойств и направленного действия инфракрасного излучения, а также контактной передачи тепла от поверхности термомата прогрев грунта происходит с высокой эффективностью одновременно сразу на всю глубину промерзания.

Результаты испытаний. В технической литературе приводятся описания испытаний одной из моделей термоматов размером 1,2 х 3,2 м и мощностью 800 Вт/м2. Эксперимент проводился в конце зимы, в период наибольшего промерзания грунта. Прогрев грунта термоматами происходил в автоматическом режиме при температуре воздуха –20 °С, начальной температуре грунта –18 °С, верхний слой грунта в 20 см состоял из смеси глины, песка и шлака, далее шла чистая глина. Участок был очищен от снега, поверхность максимально выровнена, на нее уложена полиэтиленовая пленка. Далее укладывались термоматы один вплотную к другому без перекрытия и подключались к электропитанию по «параллельной» к электропитанию по «параллельной» схеме. В первые часы все выделенное тепло поглощалось грунтом и термоматы работали не отключаясь, затем, с прогревом поверхности грунта до 70 °С, термоматы начинали отключаться, а когда температура термомата опускалась до 55–60 °С, он снова включался. На время прогрева влияют начальные условия (температура воздуха и грунта) и свойства грунта (теплопровод¬ность, влажность). Испытания показали, что для прогрева данного грунта на глубину 600 мм необходимо от 20 до 32 ч.

Термоматы создают стабильный тепловой поток, что является необходимым условием качественного затвердевания бетона в зимнее и летнее время и исключает появление температурных трещин. Марочный бетон за 11 ч набирает прочность, которую он приобрел бы за 28 суток в естественных условиях. Высокая скорость схватывания бетона достигается за счет проникновения инфракрасных лучей в толщу бетонной массы.

Преимущества термоматов. Оборудование не требует предварительной подготовки и полностью готово к работе; относительно невысокая стоимость; простота настройки и обслуживания; малый вес и удобство в эксплуатации, от работников не требуется специальных навыков; высокий КПД и низкое энергопотребление, например 0,5 кВт • ч на 1 м2 . Термоэлектроматы полностью безопасны. В каждом сегменте термомата есть термоограничитель, температура не поднимется выше заданной. Оборудование не загрязняет окружающую среду. По требованию заказчика термоматы могут производиться с индивидуальными параметрами мощности и размеров.

Недостатки термоматов. Необходимость обеспечения электропитания и постоянного контроля работы оборудования; отсутствие антивандальной защиты, относительная нестойкость к повреждениям.

Гидравлические станции для прогрева грунта

Если нужно прогреть грунт зимой на большой площади, например под устройство бетонной подушки в 400 м2 и более, обычными способами — термоматами, инфракрасными излучателями, тепловыми пушками, навряд ли получится разогреть такую массу земли на такой площади. Скорее всего здесь будет эффективна технология прогрева земли с помощью парникового эффекта, который создается гидравлическими станциями. В настоящее время западные компании широко применяют технологию размораживания грунтов гидравлическими станциями в зимний период для проведения землеройных и бетонных работ. Компактные гидравлические станции для прогрева грунта появились на мировом рынке строительного оборудования около 15 лет назад.

Конструкция и работа установки.

Сама установка представляет собой мобильную мини-котельную. Прицеп, на котором размещается гидравлическая станция, устанавливается как можно ближе к участку, который должен прогреваться.

Прогреваемая поверхность расчищается от снега. Тщательная расчистка позволит сократить время оттаивания на 30 %, сэкономит топливо, избавит от грязи и лишней талой воды, затрудняющей дальнейшее ведение работ. Включается котел, в котором нагревается теплоноситель. В качестве теплоносителя чаще всего используют воду, но на Западе в ходу и водно-гликолевая или пропилен-гликолевая смесь. Максимальная температура нагрева теплоносителя в современных установках (в зависимости от производителя) находится в пределах 75–90 °С. Цифровой термостат позволяет оператору просто регулировать температуру теплоносителя. Нагревательный котел оснащается горелкой, работающей на газе или дизельном топливе. Нагретый до заданной температуры теплоноситель поступает в термоизолированную емкость. Из емкости теплоноситель с помощью насоса нагнетается в нагревающие шланги.

Нагревающие шланги разматываются из катушки. Рекомендуется укладывать их «змейкой» в 2–4 ряда в зависимости от того, какой интенсивности требуется прогрев. Чем меньше расстояние между витками (например, 450 мм), тем меньше времени потребуется на прогрев поверхности. В зависимости от межшлангового расстояния можно добиться нужной площади и скорости прогрева. Входы и выходы шлангов подсоединяются к распределительному коллектору станции так чтобы теплоноситель циркулировал через них по замкнутому контуру. В принципе, шланги можно укладывать по произвольной схеме, по форме и рельефу прогреваемой поверхности тоже ограничений нет.

Шланги армированы синтетическим волокном и обладают исключительной гибкостью и прочностью на разрыв. Исправность и готовность оборудования к работе контролируется встроенными датчиками. Шланги и прогреваемый участок обязательно закрываются паронепроницаемой или полиэтиленовой пленкой внахлест (особенно важно при работе с бетоном) и теплоизолирующими матами (утеплителем), чтобы создать «парниковый эффект» и уменьшить потери тепла в окружающий воздух. Чем тщательнее будет изолирована прогреваемая поверхность, тем меньше потребуется времени, чтобы прогреть грунт. Пленка не позволит нагретой воде испариться. Талая вода растопит лед в нижних слоях грунта.

Время подготовки к прогреву занимает всего лишь около 30 минут.

Открывается кран — и нагрев пошел!

В гидравлических станциях некоторых производителей есть возможность при необходимости увеличить в несколько раз номинальную площадь прогрева грунта за счет подключения дополнительного насоса и дополнительных шлангов. Прогрев мерзлого грунта осуществляется в относительно короткие сроки — 20–30 ч, но при необходимости возможна непрерывная эксплуатация таких установок и до 60–130 ч. Такая установка имеет к.п.д. до 94 %, то есть практически все тепло, вырабатываемое установкой, идет на прогрев грунта. Средняя скорость размораживания грунта подобным методом составляет 300–600 мм в глубину в сутки. Однако при более плотной укладке нагревательных рукавов и тщательной теплоизоляции можно увеличить темп размораживания.

Прочие возможности применения.

Вскоре после начала использования этой технологии выяснилось, что гидравлические станции также помогают ускорить процесс застывания бетона зимой, не давая влаге в бетоне превратиться в лед даже при температурах от –30 до –40 °С. Бетону для застывания требуется тепло: чем теплее будет бетон, тем скорее он отвердеет, оптимальная температура для застывания от +20 до +25 °С. В сильный мороз бетон будет твердеть очень долго и потеряет качество. Кроме того, прогревающие гидравлические станции можно использовать для обогрева теплиц и цветников, отопления помещений, предотвращения обледенения футбольных полей и т.д.

Преимущества и недостатки. Преимуществами данной технологии перед другими методами являются: возможность отогревать значительные площади грунта; простота в эксплуатации, обслуживании и хранении оборудования; использование оборудования не требует специфических знаний, навыков и длительного обучения персонала; автономность, мобильность и многофункциональность оборудования; стабильность результатов при производстве работ; минимальные трудовые и материальные затраты на подготовку прогреваемой поверхности; экологичность и безопасность — нет опасности поражения электрическим током и горячим теплоносителем, не создает магнитных полей, прогревающие шланги полностью герметичны.

К недостаткам можно отнести высокую стоимость оборудования (2– 3 млн руб.), необходимость постоянного присутствия оператора при производстве работ.

Шатер и нагревательное оборудование

Далее представим несколько способов прогрева, для которых общим является наличие некоего строения над прогреваемым участком и источника тепла.

Прогрев горячим воздухом. Довольно простой и доступный метод прогрева грунта — с помощью горячего воздуха — позволяет размораживать грунт в самое холодное время. Предварительно с отогреваемого участка необходимо убрать снег.

Над участком возводится временное строение — тепляк или шатер. Тепляк — временное каркасно-тентовое строительное укрытие для гидрои теплоизоляции. Применяется при выполнении строительных работ. Внутри устанавливается дизельная, газовая или электрическая тепловая пушка, газовая горелка или печка. Воздух в тепляке/шатре может нагреваться до 50–65 °C. Стены и крышу тепляка/ шатра можно накрыть имеющимися тепло¬изолирующими материалами или даже лапником из леса.

Преимущества. Соорудить такое временное помещение или развернуть такую установку намного проще, и требуется меньше трудозатрат, чем на оборудование для прогрева грунта других типов. Одновременно с размораживанием эта установка подсушивает грунт, и его становится легче копать. Западные производители такого оборудования утверждают, что их установки прогревают и высушивают грунт в два раза быстрее, чем при использовании гидравлических станций со шлангами, по которым циркулирует горячий теплоноситель.

Недостаток. Слабая теплоизоляция, отсюда большие потери тепла, воздушные тепловые пушки передают грунту всего около 15 % тепловой энергии.

Отражательные печи. Как показал опыт, при ремонте коммунальных городских сетей наиболее удобным и быстрым является метод отогрева мерзлого грунта отражательными (рефлекторными) печами, которые подвешиваются изнутри к крыше тепляка — открытого снизу короба с утепленными стенками и крышей.

Отражательные печи имеют сверху рефлектор параболической формы из алюминиевого, дюралюминиевого или стального хромированного листа толщиной 1 мм. В фокусе параболы, который находится на расстоянии 60 мм от рефлектора, располагается источник тепловых лучей: электрическая спираль накаливания, водяная или паровая батарея. Рефлектор фокусирует тепловые лучи на нижележащем участке земли, за счет этого энергия расходуется более экономично, а оттаивание грунта происходит более интенсивно, чем при нагреве теплым воздухом. Сверху печь закрывается стальным кожухом, защищающим рефлектор от механических повреждений. Между кожухом и рефлектором имеется прослойка воздуха, улучшающая теплоизоляцию печи. Спираль накаливания изготавливается из нихромовой или фехралевой проволоки диаметром 3,5 мм, навитой спиралью на изолированную асбестом стальную трубу. Нихром (Ni-Cr и Ni-Cr-Fe) получил название от никеля («ни») и хрома («хром») в своем составе, а фехраль (Fe-Cr-Al) назван по первым буквам основных элементов («фе», «хр», «аль»). На современном рынке фехраль дешевле нихрома как минимум в 3–5 раз. Однако нихром способен выдержать большее количество циклов включения-выключения нагревательных элементов до их перегорания.

Продолжение в следующем номере

Язык статьи:
Действия с выбранными: