По всем вопросам звоните:

+7 495 274-22-22

УДК: 628.16

Оптимизация процесса обезжелезивания воды: анализ O₃ и H₂O₂ в процессе обезжелезивания

Ксенофонтов Б.С. д-р техн. наук, профессор, академик РЭА, Московский государственный технический университет им. Н.Э. Баумана, Москва, E-mail: kbsflot@mail.ru, ORCID: 0000-0002-6769-2406
Смирнов В.С. магистр, Московский государственный технический университет им. Н.Э. Баумана, Москва, E-mail: svs19ea324@student.bmstu.ru, ORCID: 0009-0008-5003-1282
Могилина А.С. бакалавр, Московский государственный технический университет имени Н.Э. Баумана, Москва, Российская Федерация, ORCID: 0009-0004-7224-1265

В данном исследовании рассматривается совместное применение озона (O₃) и пероксида водорода (H₂O₂) для обезжелезивания воды — важнейшего процесса водоподготовки и очистки. В статье представлен всесторонний анализ эффективности O₃ и H₂O₂, как по отдельности, так и в комбинации, в процессах окисления железа. Особое внимание уделено химии этих процессов окисления и возникающим синергетическим эффектам при совместном использовании O₃ и H₂O₂. Экспериментальные результаты исследования подчеркивают значительные преимущества такого комбинированного подхода, включая более высокую скорость окисления Fe₂+, а также возможность работы в более широком диапазоне pH, что делает его особенно ценным в условиях, когда традиционные методы не могут быть эффективны.

Литература:

1. Malakar A., Kanel S.R., Ray C., Snow D.D., Nadagouda M.N. Nanomaterials in the environment, human exposure pathway, and health effects: A review. Science of the Total Environment. 2021. Vol. 759. P. 143470. DOI: 10.1016/j.scitotenv.2020.143470

2. Yan L., Bing J., Wu H. The behavior of ozone on different iron oxides surface sites in water. Scientific reports. 2019. Vol. 9. No. 1. P. 14752. DOI: 10.1038/s41598-019-50910-w

3. Gordeev M.B., Kolodyazhny V.A. De-ironing of natural waters by ozonation in the presence of hydrogen peroxide. Water Supply and Sanitary Technique. 2010. No. 6. P. 22–25. (In Russ.)

4. Wang J., Wang S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chemical Engineering Journal. 2020. Vol. 401. P. 126158. DOI: 10.1016/j. cej. 2020.126158

5. Hollman J., Albino Dominic J., Jackson L., Achari G. Application-scale parametric evaluation of ultraviolet photolysis (UV) and UV/H2O2 for the degradation of neutral pharmaceuticals in municipal wastewaters. Journal of Environmental Engineering. 2021. Vol. 147. No. 12. P. 04021061. DOI: 10.1061/ (ASCE) EE. 1943– 7870.000193

6. Gorito A.M., Pesqueira J.F., Moreira N.F., Ribeiro A.R., Pereira M.F., Nunes O.C., Almeida C.M., Silva A.M. Ozone-based water treatment (O3, O3/UV, O3/H2O2) for removal of organic micropollutants, bacteria inactivation and regrowth prevention. Journal of Environmental Chemical Engineering. 2021. Vol. 9. No. 4. P. 105315. DOI: 10.1016/j.jece.2021.105315

7. Epelle E.I., Macfarlane A., Cusack M., Burns A., Okolie J.A., Mackay W., Rateb M., Yaseen M. Ozone application in different industries: A review of recent developments. Chemical Engineering Journal. 2023. Vol. 454. P. 140188. DOI: 10.1016/j. cej. 2022.140188

8. Sukmilin A., Sangsirimongkolying R. Treatment of iron from groundwater by ozonation: influence of hardness as a Scavenger. Applied Environmental Research. 2021. Vol. 43. No. 2. P. 106–115. DOI: 10.35762/ AER. 2021.43.2.8

9. Duca G., Travin S. Reactions' mechanisms and applications of hydrogen peroxide. American Journal of Physical Chemistry. 2020. Vol. 9. No. 2. P. 36–44. DOI: 10.11648/j. ajpc. 20200902.13

10. Grishin B.M., Bikunova M.V., Titov E.A., Shein A.I. Removal of organic forms of iron from groundwater using hydrogen peroxide. Regional Architecture and Construction. 2022. Vol. 15. No. 2. P. 161–166. (In Russ.) DOI: 10.54734/20722958_2022_2_161

11. Ziembowicz S., Kida M. Limitations and future directions of application of the Fenton-like process in micropollutants degradation in water and wastewater treatment: A critical review. Chemosphere. 2022. Vol. 296. P. 134041. DOI: 10.1016/j.chemosphere.2022.134041

12. Rushnikov A.Yu. Rate of oxidation of divalent iron. SOK. 2022. No. 10. P. 23–25. (In Russ.)

13. Kulakova E.S., Drovovozova T.I. Analysis of the sanitary and hygienic safety of natural water treated with hydrogen peroxide. Environmental Engineering. 2010. No. 2. P. 86–90. (In Russ.)

14. Khuntia S., Sinha M.K., Mohan G. Evaluation of Reaction Kinetics for Removal of NOx by Ozone and Hydrogen Peroxide. Industrial & Engineering Chemistry Research. 2020. Vol. 59. No. 40. P. 17806–17814. DOI: 10.1021/acs.iecr.0c03820

In recent decades, the de-ironing of water has become a significant issue in the field of water treatment and purification. With the growth of industrial activity and the expansion of urban territories, the quality of water resources has significantly deteriorated, leading to an increase in the content of elements such as iron in natural waters. This problem has gained particular relevance, considering the impact of iron on human health and industrial processes [1].

Iron in water, especially in its divalent form (Fe+2), is one of the most common contaminants of the hydrosphere. It not only spoils the taste and color of water but also promotes the development of iron bacteria, causing various problems in water supply and irrigation systems [2]. Traditional iron removal methods, such as aeration, filtration, and coagulation, often prove ineffective at high iron concentrations, especially in conditions of complex water chemical composition [3]. Therefore, among the various approaches to water purification, special attention is drawn to the use of ozone (O3) and hydrogen peroxide (H2O2).

The aim of this work is to analyze existing scientific research on the application of O3 and H2O2 in the processes of water de-ironing. Particular attention is paid to the study of the chemistry of iron oxidation processes and the comparison of the effectiveness of using O3 and H2O2, both separately and in combination.

Water purification ozonation, due to O3 ability to rapidly decompose without residual effects, represents an environmentally safe choice. Additionally, O3 can combat microbiological and other organic water contaminants, thereby providing comprehensive water purification [2]. On the other hand, hydrogen peroxide is attractive due to its accessibility and relative cost-effectiveness, as well as the possibility of application across a wide pH range of water [5].

Для Цитирования:
Ксенофонтов Б.С., Смирнов В.С., Могилина А.С., Оптимизация процесса обезжелезивания воды: анализ O₃ и H₂O₂ в процессе обезжелезивания. Водоочистка. 2025;2.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: