Известно, что аналитическое исследование электромагнитных и электромеханических переходных процессов в синхронной машине с учетом всех влияющих факторов является весьма сложной задачей. В связи с чем для упрощения расчета приходится делать ряд допущений, которые вносят некоторые погрешности в оценку рассматриваемых параметров синхронной машины. К основным допущениям, применяемым в практических методах расчета, можно отнести следующие [1]:
• Магнитная система машины не насыщена, в результате чего индуктивности машины не зависят от намагничивающей силы.
• Вместо действительных кривых распределения магнитной индукции в воздушном зазоре по расточке статора учитываются только их составляющие первой гармоники.
• В магнитной системе машины отсутствуют какие-либо потери.
• Считается, что конструкция машины обеспечивает полную симметрию фазных обмоток статора. Ротор также симметричен относительно своих продольной и поперечной осей.
Однако в некоторых случаях принятые при расчете допущения не позволяют выявить и провести корректный анализ ненормальных режимов синхронной машины. К такому режиму, например, можно отнести несимметрию фазных обмоток статора, вызванную наличием витковых замыканий в одной из них.
Существующие программные пакеты моделирования переходных процессов в электроэнергетических системах, такие как MATLAB Simulink [2], PSCAD, Mustang, используют для описания электромагнитных процессов синхронной машины уравнения Парка-Горева [1], которые записываются в неподвижной относительно ротора системе координат и предполагают полную симметрию фазных обмоток статора. Очевидно, что такой метод моделирования не может быть применен для расчета процессов в поврежденной синхронной машине с отличающимися параметрами фазных обмоток.
В статье приведен вывод системы дифференциальных уравнений, описывающих переходные процессы трехфазной синхронной машины с учетом индивидуальных активных сопротивлений и индуктивностей обмоток. Далее произведено сравнение результатов моделирования переходных процессов синхронной машины, выполненного посредством библиотеки блоков SimPowerSystems, входящей в состав среды MATLAB Simulink, с результатами, полученными с помощью предложенного метода.