По всем вопросам звоните:

+7 495 274-22-22

УДК: 621.8.043 DOI:10.33920/pro-2-2009-04

Metal-polymer composites with ultra-and nanodisperse particles

Filonovich A.V., D.Sc. in Engineering, Full Professor, South-West State University, Kursk, 19, Sadovaya St., Kursk, 305004
Filatov Ye.A. Postgraduate student, South-West State University, Kursk, 19, Sadovaya St., Kursk, 305004
Gadalov V.N. D.Sc. in Engineering, Full Professor, South-West State University, Kursk, 19, Sadovaya St., Kursk, 305004, е-mail: GadalovVN@yandex.ru
Makarova I.A. Postgraduate student, South-West State University, Kursk, 19, Sadovaya St., Kursk, 305004, е-mail: makarova.mia@yandex.ru

The results of studies of the structure, mechanical and tribological properties of composite materials based on polytetrafluoroethylene (PTFE) and simple (Al2 O3 , Cr2 O3 , ZrO2 ), complex (spinels Coal2 o3 and MgAl2 O4, and cordierite 2MgO·2Al2 O3·5SiO2 ) oxide nanopowders, as well as amorphous polyvinyl chloride (PVC) with heat stabilizers and elastomeric additives, are presented.

Литература:

1. Vasilyeva V.V., Tarnapolskiy Yu.M. Kompozitsionniye materialy: spravochnik [Composite Materials: Reference Book]. Moscow: Mashinostroyeniye, 1990, 510 p.

2. Pomogailo A.D. Nanochastitsy metallov v polimerakh [Metal Nanoparticles in Polymers]. Moscow: Khimiya, 2000, 672 p.

3. Spetsialniye polimerniye materialy i pokrytiya. GOST В26471-85, GOST В51035-97 [Special Polymer Materials and Coatings. GOST В26471-85, GOST В5103597]. Electronic source. Available at www. nikimtatomstroy.ru (access date 08/19/2020).

4. Panshin Yu.P. Ftoroplasty [Fluoroplasts]. Chemistry, 1999, 196 p.

5. Ftoroplastovaya suspenziya F-2MSD [Fluoroplastic Suspension F-2MSD]. Electronic source. Available at www.nanokras. ru (access date 07/17/2020).

6. Emal VL-515.TU6-10-1052-75 [Enamel VL-515.TU6-10-1052-75]. Electronic source. Available at www.vtorpolymer.ru (access date 07/17/2020).

7. Buznik V.M. Metallopolimerniye nanokompozity (polucheniye, svoistva, primeneniye) [Metal-Polymer Nanocomposites (Production, Properties, Application)]. Novosibirsk: RAS Siberian Division Publishing House, 2005, 215 p.

8. Okhlopkova A.A. Plastiki, napolnenniye ultradispersnymi neorganicheskimi soyedineniyami [Plastics Filled with Ultradispersed Inorganic Compounds]. Gomel: Metal–Polymer Research Institute of National Academy of Sciences of Belarus Publishing, 1999, 180 p.

9. Avdeychik S.V. Polimersilikatniye mashinostroitelniye materialy: fiziko-khimiya, tekhnologiya, primeneniye [Polymer Silicate Engineering Materials: Physical Chemistry, Technology, Application]. Minsk: Tekhnologiya, 2006, 427 p.

10. Avdeychik S.V. Tribotekhmicheskiye tekhnologii funktsionalnikh kompozitsionnylh materialov [Tribotechnical Technologies of Functional Composite Materials. Model Representations]. Grodno: Gorsk State Agrarian University, 2007, 318 p.

11. Mikhailin Yu.A. Konstruktsionniye polimerniye kompozitsionniye materialy [Structural Polymer Composite Materials]. St. Petersburg: Nauchniye osnovy tekhnologii, 2008, 822 p.

12. Kerber M.L. Polimerniye konstruktsionniye materialy: struktura, svoistva, tekhnologiya [Polymer Construction Materials: Structure, Properties, Technology]. St. Petersburg: Professiya, 2008, 560 p.

13. Zaporotskova I.V. Uglarodniye i neuglerodniye nanomaterialy i kompozitniye struktury na ikh osnove: stroyeniye i elektronniye svoistva [Carbon and NonCarbon Nanomaterials and Composite Structures Based on Them: Structure and Electronic Properties]. Volgograd: VOLGA Publishing House, 2009, 490 p.

14. Bondaletova L.I. Polimerniye kompozitsionniye materialy [Polymer Composite Materials]. Tomsk: Tomsk Polytechnic University Publishing House, 2013, 118 p.

15. Berlin A.A., Assobskiy I.G. Nanokompozity: issledovaniya, proizvodstvo i primeneniye [Nanocomposites: Research, Production and Application]. Moscow: TorusPress, 2014, 224 p.

16. Gadalov V.N. Materialovedeniye. Uchebnik [Material Science. Textbook]. Moscow: ARGAMAK-MEDIA, INFRA-M, 2016, 272 p.

17. Gadalov V.N. Tekhnologiya konstruktsionnykh materialov i materialovedeniye svarki [Technology of Structural Materials and Welding Materials Science]. Kursk: Uchitel LLC, 2018, 225 p.

18. Gadalov V.N. Prochnost poroshkovykh i kompozitsionnykh materialov na osnove metallov i keramiki [Strength of Powder and Composite Metal and Ceramic Based Materials]. Kursk: Publishing House of Universitetskaya kniga CJSC, 2017, 130 p.

19. Gadalov V. N. Zakonomernosti formirovaniya struktury chastits poroshkovykh kompozitsiy na osnove alyuminiya, poluchayemykh mekhanicheskim reaktsionnym legirovaniyem [Laws of Particle Structure Formation in Aluminum Based Powder Compositions Derived by Mechanical Reaction Alloying]. Materials Science, 2019, pp. 24-29.

20. Gadalov V.N. Kompozitsionniye poroshkoviye pokrytiya spetsialnogo naznacheniya [Composite Powder Coatings for Special Purpose]. Chief Mechanical Engineer. Moscow: Moscow State Technical University Bauman University, 2020, No. 7 (203), pp. 32-36.

Metallopolymers — composite materials containing metal particles in a polymer matrix are produced by several methods: thermal decomposition of metal-containing compounds in a polymer melt solution, condensation of metal vapours on a polymer substrate, encapsulation of nanoparticles with polytetrafluoroethylene, and electrochemical deposition of metal nanoparticles in polymers [1, 2]. Commercial products, such as electrically conductive composite materials for heating panels, are already being derived from metalpolymer composites.

The introduction of metal particles with sizes larger than the distance between chains, cross-links and crystal blocks into the polymer matrix impairs the polymer structure and degrades the composite properties. As the size of metal and polymer particles decreases, the properties of the initial components and those of composite material change. Changing the section division share allows to modify the material properties. Metal nanoparticles of the filler lead to the re-arrangement of the supramolecular structure of the polymer matrix [2-20].

The study findings for mechanical and tribological properties of composite materials based on PTFE and simple (Al2O3, Sg2o3, ZrO2), complex (spinels CoAl2O4 and MgAl2O4, and cordierite 2MgO·2Al2O3·5SiO2) oxide nanopowders are shown in the table.

The structure of the composite material, to which aluminium oxide was added, is formed from the same-size supramolecular spherulites that are more perfect than in case when other oxides are added. The density of agglomerates from spinel nanoparticles is 3 times higher than that of agglomerates from cordierite nanoparticles on the friction surface. A higher density of agglomerate coating of the friction surface leads to greater resistance to contact deformations. PTFE-based composites modified with oxide nanopowders have greater wear resistance than traditional anti-friction materials containing coke and molybdenum disulfide as a filler, but they have almost the same strength and ductility.

Для Цитирования:
Filonovich, Filatov Ye.A., Gadalov V.N., Makarova I.A., Metal-polymer composites with ultra-and nanodisperse particles. Главный механик. 2020;9.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: