По всем вопросам звоните:

+7 495 274-22-22

УДК: 615.281 DOI:10.33920/med-06-2003-03

Коронавирусная инфекция: принципы этиотропной химиотерапии

профессор, чл.-корр. РАН, руководитель лаборатории вирусного патогенеза, Институт вирусологии им. Д. И. Ивановского НИЦЭМ им. Н. Ф. Гамалеи МЗ РФ, г. Москва; Е-mail: zhirnov@inbox.ru

В развитии инфекционного процесса, вызванного коронавирусами, можно выделить две стадии: раннюю (этиотропную) и позднюю (патогенетическую). Лечебная тактика имеет особенности в зависимости от стадии. На первой стадии, когда происходит накопление вируса, применяются этиотропные средства, блокирующие его размножение. В статье рассмотрены 7 главных химиотерапевтических подходов, направленных на различные мишени в репликации коронавирусов: ингибиторы вирусной РНК-полимеразы, ингибиторы вирусной протеазы Мpro, ингибиторы протеолитической активации вирусного белка S, осуществляющего вход вируса в клетку-мишень, ингибиторы вирусной депротеинизации в клеточных эндосомах, препараты экзогенного интерферона, препараты природных и рекомбинантных вируснейтрализующих антител, а также комбинации перечисленных препаратов. На второй стадии, когда размножение вируса падает и доминируют угрожающие патологические процессы избыточного воспаления, острого респираторного дистресс-синдрома, отека легочной ткани, гипоксии и угрожающего сепсиса, целесообразно применение патогенетических средств, таких как экстракорпоральная оксигенация крови, дезинтоксикационные, противовоспалительные и антибактериальные терапевтические средства и мероприятия.

Литература:

1. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015; 1282: 1–23. doi: 10.1007/978-1-4939-2438-7_1. Review. PubMed PMID: 25720466; PubMed Central PMCID: PMC4369385.

2. Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defense: lessons from other pathogenic viruses. Emerg Microbes Infect. 2020 Mar 14; 9 (1): 558–570. doi: 10.1080/22221751.2020. 1736644. eCollection 2020. Review. PubMed PMID: 32172672; PubMed Central PMCID: PMC7103735.

3. Fung, T. S., and Liu, D. X. (2019) Human coronavirus: host-pathogen interaction, Annu. Rev. Microbiol., 73, 529–557, doi: 10.1146/annurev-micro-020518–115759.

4. Beach J. R., Schalm O. W. (1936) A Filterable Virus, Distinct from that of Laryngotracheitis, the Cause of a Respiratory Disease of Chicks. J. Am. Vet.Med.Assc. XV, N3, 199–206.

5. Al-Khannaq MN, Ng KT, Oong XY, Pang YK, Takebe Y, Chook JB, Hanafi NS, Kamarulzaman A, Tee KK. Molecular epidemiology and evolutionary histories of human coronavirus OC43 and HKU1 among patients with upper respiratory tract infections in Kuala Lumpur, Malaysia. Virol J. 2016 Feb 25; 13: 33. doi: 10.1186/s12985-016-0488-4. PubMed PMID: 26916286; PubMed Central PMCID: PMC4766700.

6. Dominguez S. R. Dominguez SR, Shrivastava S, Berglund A, Qian Z, Góes LGB, Halpin RA, Fedorova N, Ransier A, Weston PA, Durigon EL, Jerez JA, Robinson CC, Town CD, Holmes KV. Isolation, propagation, genome analysis and epidemiology of HKU1 betacoronaviruses. J Gen Virol. 2014 Apr; 95 (Pt 4): 836–848. doi: 10.1099/vir.0.059832–

0. Epub 2014 Jan 6. PubMed PMID: 24394697; PubMed Central PMCID: PMC3973476.

7. Patrick D. M. Patrick DM, Petric M, Skowronski DM, Guasparini R, Booth TF, Krajden M, McGeer P, Bastien N, Gustafson L, Dubord J, Macdonald D, David ST, Srour LF, Parker R, Andonov A, Isaac-Renton J, Loewen N, McNabb G, McNabb A, Goh SH, Henwick S, Astell C, Guo JP, Drebot M, Tellier R, Plummer F, Brunham RC. An Outbreak of Human Coronavirus OC43 Infection and Serological Cross-reactivity with SARS Coronavirus. Can J Infect Dis Med Microbiol. 2006 Nov; 17 (6): 330–6. PubMed PMID: 18382647; PubMed Central PMCID: PMC2095096.

8. Vabret A, Mourez T, Gouarin S, Petitjean J, Freymuth F. An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin Infect Dis. 2003 Apr 15; 36 (8): 985–9. Epub 2003 Apr 4. PubMed PMID: 12684910; PubMed Central PMCID: PMC7109673.

9. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000 Oct; 74 (19): 8913–21. PubMed PMID: 10982334; PubMed Central PMCID: PMC102086.

10. Memish ZA, Perlman S, Van Kerkhove MD, Zumla A. Middle East respiratory syndrome. Lancet. 2020 Mar 28; 395 (10229): 1063–1077. doi: 10.1016/S0140–6736 (19) 33221–0. Epub 2020 Mar 4. Review. PubMed PMID: 32145185.

11. [5] Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020 Apr; 92 (4): 418–423. doi: 10.1002/jmv.25681. Epub 2020 Feb 7. Review. PubMed PMID: 31967327.

12. Wang L, Qiao X, Zhang S, Qin Y, Guo T, Hao Z, Sun L, Wang X, Wang Y, Jiang Y, Tang L, Xu Y, Li Y. Porcine transmissible gastroenteritis virus nonstructural protein 2 contributes to inflammation via NF-κB activation. Virulence. 2018; 9 (1): 1685– 1698. doi: 10.1080/21505594.2018.1536632. PubMed PMID: 30322331; PubMed Central PMCID: PMC7000202.

13. Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, Verdia-Báguena C, Queralt-Martín M, Kochan G, Perlman S, Aguilella VM, Sola I, Enjuanes L. Role of Severe Acute Respiratory Syndrome Coronavirus Viroporins E, 3a, and 8a in Replication and Pathogenesis. mBio. 2018 May 22; 9 (3). pii: e02325–17. doi: 10.1128/mBio.02325–

17. PubMed PMID: 29789363; PubMed Central PMCID: PMC5964350.

14. Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 2018 Jan; 149: 58–74. doi: 10.1016/j. antiviral.2017.11.001. Epub 2017 Nov 8. Review. PubMed PMID: 29128390.

15. Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics. 2020 Feb 13. pii: S1673–8527 (20) 30027–8. doi: 10.1016/j.jgg.2020.02.001. [Epub ahead of print] PubMed PMID: 32173287.

16. Zheng, J., and Perlman, S. (2018) Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host, Curr. Opin. Virol., 28, 43–52, doi: 10.1016/j.coviro.2017.11.002.

17. Mazur I, Wurzer WJ, Ehrhardt C, Pleschka S, Puthavathana P, Silberzahn T, Wolff T, Planz O, Ludwig S. Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-kappaB-inhibiting activity. Cell Microbiol. 2007 Jul; 9 (7): 1683–94. Epub 2007 Feb

23. PubMed PMID: 17324159.

18. Dushianthan A, Grocott MP, Postle AD, Cusack R. Acute respiratory distress syndrome and acute lung injury. Postgrad Med J. 2011 Sep; 87 (1031): 612–22. doi: 10.1136/pgmj.2011.118398. Epub 2011 Jun 4. Review. PubMed PMID: 21642654.

19. Peking University First Hospital. Favipiravir combined with tocilizumab in the treatment of Corona Virus Disease 2019. Retrieved March 26, 2020 Elsevier © https: // clinicaltrials.gov/ct2 /show/NCT04310228? cond=Coronavirus&intr=Tocilizumab&draw =2&rank=1.

20. Russell B, Moss C, George G, Santaolalla A, Cope A, Papa S, Van Hemelrijck M. Associations between immune-suppressive and stimulating drugs and novel Covid-19 — a systematic review of current evidence. ecancer. 2020; 14: 1022. doi: 10.3332/ecancer.2020.1022.

21. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020 Feb 15; 395 (10223): 473–475. doi: 10.1016/S0140–6736 (20) 30317–2. Epub 2020 Feb 7. PubMed PMID: 32043983.

22. Matsuyama S., Kawase M., Nao N., Shirato K., Ujike M., Kamitani W., Shimojima M., Fukushi S. (2020) The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15. BioRxiv. doi.org/10.1101/2020.03.11.987016. https://www.biorxiv.org/content/10.1101/2020.03.11.987016v1

23. WHO interim guidance 28 January 2020, Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected, URL: https:// www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html.

24. Weiss, S. L., Peters, M. J., Alhazzani, W., Agus, M. S. D., Flori, H. R., et al. (2020) Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ sysfunction in children, Pediatr. Crit. Care Med., 21, e52-e106, doi: 10.1097/PCC.0000000000002198.

25. Sidwell, R. W., Robins, R. K., and Hillyard, I. W. (1979) Ribavirin: an antiviral agent, Pharmacol. Ther., 6, 123–146.

26. Morgenstern, B., Michaelis, M., Baer, P. C., Doerr, H. W., and Cinatl, J. Jr. (2005) Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines, Biochem. Biophys. Res. Commun., 326, 905–908.

27. Gilbert, B. E., and Knight, V. (1986) Biochemistry and clinical applications of ribavirin, Antimicrob. Agents Chemother., 30, 201–205.

28. Delang, L., Abdelnabi, R., and Neyts, J. (2018) Favipiravir as a potential countermeasure against neglected and emerging RNA viruses, Antiviral. Res., 153, 85–94, doi: 10.1016/j. antiviral.2018.03.003.

29. Sheahan, T. P., Sims, A. C., Graham, R. L., Menachery, V. D., Gralinski, L. E., Case, J. B., Leist, S. R., Pyrc, K., Feng, J. Y., Trantcheva, I., Bannister, R., Park, Y., Babusis, D., Clarke, M. O., Mackman, R. L., Spahn, J. E., Palmiotti, C. A., Siegel, D., Ray, A. S., Cihlar, T., Jordan, R., Denison, M. R., and Baric, R. S. (2017) Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses, Sci. Transl. Med., 9, 396, doi: 10.1126/scitranslmed.aal3653.

30. Lo, M. K., Jordan, R., Arvey, A., Sudhamsu, J., Shrivastava-Ranjan, P., Hotard, A. L., Flint, M., McMullan, L. K., Siegel, D., Clarke, M. O., Mackman, R. L., Hui, H. C., Perron, M., Ray, A. S., Cihlar, T., Nichol, S. T., and Spiropoulou, C. F. (2017) GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses, Sci. Rep., 7, 43395, doi: 10.1038/srep43395.

31. Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., Montgomery, S. A., Hogg, A., Babusis, D., Clarke, M. O., Spahn, J. E., Bauer, L., Sellers, S., Porter, D., Feng, J. Y., Cihlar, T., Jordan, R., Denison, M. R., and Baric, R. S. (2020) Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV, Nat Commun., 11, 222, doi: 10.1038/s41467-019-13940-6.

32. Kleine-Weber, H., Elzayat, M. T., Hoffmann, M., and Pöhlmann S. (2018) Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein, Sci. Rep., 8, 16597, doi: 10.1038/s41598-018-34859-w.

33. Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z., Ding, Y., Zhao, Q., Zhang, X. C., Liao, M., Bartlam, M., and Rao, Z. (2008) Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design, J. Virol., 82, 2515–2527.

34. Al-Tawfiq, J. A., and Memish, Z. A. (2017) Update on therapeutic options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Expert. Rev. Anti. Infect. Ther., 15, 269–275, doi: 10.1080/14787210.2017.1271712.

35. Liu, X., and Wang, X. J. (2020) Potential inhibitors for 2019-nCoV coronavirus M protease from clinically approved medicines, BioRxiv, doi: 10.1101/2020.01.29.924100.

36. Chen F, Chan KH, Jiang Y et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 2004; 31: 69–75. PMID: 1528861754.

37. Yao TT, Qian JD, Zhu WY et al. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treat-ment option. J Med Virol 2020 Feb 27. [Epub ahead of print] PMID: 32104907

38. Gautret P, Lagier J, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020 Mar 20. [Epub ahead of print] PMID: 32205204

39. Colson, P., Rolain, J. M., and Raoult, D. (2020) Chloroquine for the 2019 novel coronavirus SARS-CoV-2, Int. J. Antimicrob. Agents, 105923, doi: 10.1016/j.ijantimicag.2020.105923, [Epub ahead of print].

40. Rolain, J. M., Colson, P., and Raoult, D. (2007) Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century, Int. J. Antimicrob. Agents, 30, 297–308.

41. Gao, J., Tian, Z., Yang, X. (2020) Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci. Trends, 14, 72–73, doi: 10.5582/bst.2020.01047.

42. Xia, S., Yan, L., Xu, W., Agrawal, A. S., Algaissi, A., Tseng, C. K., Wang, Q., Du, L., Tan, W., Wilson, I. A., Jiang, S., Yang, B., and Lu, L. (2019) A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike, Sci. Adv., 5, eaav4580, doi: 10.1126/sciadv.aav4580.

43. Kleine-Weber, H., Elzayat, M. T., Hoffmann, M., and Pöhlmann S. (2018) Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein, Sci. Rep., 8, 16597, doi: 10.1038/s41598-018-34859-w.

44. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., and Pöhlmann, S. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, doi: 10.1016/j.cell.2020.02.052, [Epub ahead of print].

45. Жирнов О. П. (2015) Комбинированный аэрозольный состав на основе ингибиторов протеаз и его получение, Патент РФ № 2711080.

46. Жирнов О. П. (2012) Фармацевтический аэрозольный состав ингибитора протеаз, Патент ЕАПО № 034991

47. Zhirnov, O. P., Klenk, H. D., and Wright, P. F. (2011) Aprotinin and similar protease inhibitors as drugs against influenza, Antiviral. Res., 92, 27–36, doi: 10.1016/j. antiviral.2011.07.014.

48. Жирнов О. П., Поярков С. В., Малышев Н. А. (2009) Мишени противовирусного и противовоспалительного действия апротинина: перспективы нового использования, Пульмонология, 33, 27–33.

49. Kido H, Takahashi E, Kimoto T. Role of host trypsin-type serine proteases and influenza virus-cytokine-trypsin cycle in influenza viral pathogenesis.Pathogenesis-based therapeutic options. Biochimie. 2019 Nov; 166: 203–213. doi: 10.1016/j.biochi.2019.09.006. Epub 2019 Sep 10. Review. PubMed PMID: 31518617.

50. Wrapp, D., Nianshuang, W., Kizzmekia, S., Corbett, J. A., Goldsmith, C. L. H., Olubukola, A., Barney, S., Graham, J., and McLellan, S. (2020) Cryo-EM Structure of the 2019-nCoV spike in the prefusion conformation, BioRxiv, doi: 10.1101/2020.02.11.944462.

51. Ashour, H. M., Elkhatib, W. F., Rahman, M. M., and Elshabrawy, H A. (2020) Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks, Pathogens. 9, pii: E186, doi: 10.3390/pathogens9030186.

52. Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G., and Decroly, E. (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furinlike cleavage site absent in CoV of the same clade, Antiviral Res., 176, 104742, doi: 10.1016/j.antiviral.2020.104742.

53. Peng, M., Watanabe, S., Chan, K. W. K., He, Q., Zhao, Y., Zhang, Z., Lai, X., Luo, D., Vasudevan, S. G., and Li, G. (2017) Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin, Antiviral. Res., 143, 176–185, doi: 10.1016/j.antiviral.2017.03.026.

54. Shiryaev, S. A., Remacle, A. G., Ratnikov, B. I., Nelson, N. A., Savinov, A. Y., Wei, G., Bottini, M., Rega, M. F., Parent, A., Desjardins, R., Fugere. M., Day, R., Sabet, M., Pellecchia, M., Liddington, R. C., Smith, J. W., Mustelin, T., Guiney, D. G., Lebl, M., and Strongin, A. Y. (2007) Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial toxins and viral pathogens, J. Biol. Chem., 282, 20847–20853.

55. Braun, E., and Sauter, D. (2019) Furin-mediated protein processing in infectious diseases and cancer, Clin. Transl. Immunology., 8, e1073, doi: 10.1002/cti2 .1073.

56. Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J. K., Cleary, P., Khaw, F. M., Lim, W. S., Makki, S., Rooney, K. D., Convalescent Plasma Study Group, Nguyen-Van-Tam, J. S., Beck, C. R. Mateus, A. L. P., Reuter, S., Shin J., Xu, X., Pereyaslov, D., Papieva, I., Tegnell, A., Englund, H., Elfving, A., Cox, R., Mohn, K. G. -I., and Jenkins, Y. F. (2015) The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis, J. Infect. Dis., 211, 80–90, doi: 10.1093/infdis/jiu396.

57. Goo, J., Jeong, Y., Park, Y. S., Yang, E., Jung, D. I., Rho, S., Park, U., Sung, H., Park, P. G., Choi, J. A., Seo, S. H., Cho, N. H., Lee, H., Lee, J. M., Kim, J. O., and Song, M. (2020) Characterization of novel monoclonal antibodies against MERS-coronavirus spike protein, Virus Res., 278, 197863, doi: 10.1016/j.virusres.2020.197863.

58. Beigel, J. H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J. A., Sullivan, E., Luke, T., and Davey, R.T. Jr. (2018) Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-doseescalation study, Lancet Infect. Dis., 18, 410–418, doi: 10.1016/S1473–3099 (18) 30002–1.

59. Shanmugaraj, B., Siriwattananon, K., Wangkanont, K., Phoolcharoen, W. (2020) Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19), Asian Pac J Allergy Immunol., 38, 10–18, doi: 10.12932/AP-200220–0773.

60. Ko, J. H., Seok, H., Cho, S. Y., Ha, Y. E., Baek, J. Y., Kim, S. H., Kim. Y. J., Park, J. K., Chung, C. R., Kang, E. S., Cho, D., Müller, M. A., Drosten, C., Kang, C. I., Chung, D. R., Song, J. H., and Peck, K. R. (2018) Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience, Antivir. Ther., 23, 617–622, doi: 10.3851/IMP3243.

61. Arabi, Y. M., Hajeer, A. H., Luke, T., Raviprakash, K., Balkhy, H., Johani, S., Al-Dawood, A., Al-Qahtani, S., Al-Omari, A., Al-Hameed, F., Hayden, F. G., Fowler, R., Bouchama, A., Shindo, N., Al-Khairy, K., Carson, G., Taha, Y., Sadat, M., and Alahmadi, M. (2016) Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia. Emerg Infect Dis., 22, 1554–1561, doi: 10.3201/eid2209.151164.

62. Xu X, Han M, LI T, et al. Effect treatment of severe COVID-19 patients with tocilizumab. ChinaXiv.20200300026.v1

63. Wan, Y., Shang, J., Sun, S., Tai, W., Chen, J., Geng, Q., He, L., Chen, Y., Wu, J., Shi, Z., Zhou, Y., Du, L., and Li, F. (2020) Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry, J. Virol., 94, pii: e02015–19, doi: 10.1128/JVI.02015–19.

64. Farci P, Roskams T, Chessa L, Peddis G, Mazzoleni AP, Scioscia R, Serra G, Lai ME, Loy M, Caruso L, Desmet V, Purcell RH, Balestrieri A. Long-term benefit of interferon alpha therapy of chronic hepatitis D: regression of advanced hepatic fibrosis. Gastroenterology. 2004 Jun; 126 (7): 1740–9. PubMed PMID: 15188169.

65. Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., and Doerr, H. W. (2003) Treatment of SARS with human interferons, Lancet. 362, 293–294.

66. Yin, Y., and Wunderink, R. G. (2018) MERS, SARS and other coronaviruses as causes of pneumonia, Respirology, 23, 130–137, doi: 10.1111/resp.13196.

67. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., and Cao, B. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395, 497–506, doi: 10.1016/S0140–6736 (20) 30183–5.

68. Mubarak, A., Alturaiki, W., and Hemida, M. G. (2019) Middle east respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development, J. Immunol. Res., 2019, 6491738, doi: 10.1155/2019/6491738.

69. Channappanavar, R., Fehr, A. R., Zheng, J., Wohlford-Lenane, C., Abrahante, J. E., Mack, M., Sompallae, R., McCray, P. B. Jr., Meyerholz, D. K., and Perlman, S. (2019) IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes, J. Clin. Invest., 130, 3625–3639, doi: 10.1172/JCI126363.

70. Lu, Y., Hardes, K., Dahms, S. O., Böttcher-Friebertshäuser, E., Steinmetzer, T., Than, M. E., Klenk, H. D., and Garten, W. (2015) Peptidomimetic furin inhibitor MI-701 in combination with oseltamivir and ribavirin efficiently blocks propagation of highly pathogenic avian influenza viruses and delays high level oseltamivir resistance in MDCK cells, Antiviral Res., 120, 89–100, doi: 10.1016/j.antiviral.2015.05.006.

1. Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23. doi: 10.1007/978-1-4939-2438-7_1. Review. PubMed PMID: 25720466; PubMed Central PMCID: PMC4369385.

2. Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defense: lessons from other pathogenic viruses. Emerg Microbes Infect. 2020 Mar 14;9 (1):558–570. doi: 10.1080/22221751.2020. 1736644. eCollection 2020. Review. PubMed PMID: 32172672; PubMed Central PMCID: PMC7103735.

3. Fung, T. S., and Liu, D. X. (2019) Human coronavirus: host-pathogen interaction, Annu. Rev. Microbiol., 73, 529–557, doi: 10.1146/annurev-micro-020518–115759.

4. Beach J. R., Schalm O. W. (1936) A Filterable Virus, Distinct from that of Laryngotracheitis, the Cause of a Respiratory Disease of Chicks. J. Am. Vet.Med.Assc. XV, N3, 199–206.

5. Al-Khannaq MN, Ng KT, Oong XY, Pang YK, Takebe Y, Chook JB, Hanafi NS, Kamarulzaman A, Tee KK. Molecular epidemiology and evolutionary histories of human coronavirus OC43 and HKU1 among patients with upper respiratory tract infections in Kuala Lumpur, Malaysia. Virol J. 2016 Feb 25;13:33. doi: 10.1186/s12985-016-0488-4. PubMed PMID: 26916286; PubMed Central PMCID: PMC4766700.

6. Dominguez S. R. Dominguez SR, Shrivastava S, Berglund A, Qian Z, Góes LGB, Halpin RA, Fedorova N, Ransier A, Weston PA, Durigon EL, Jerez JA, Robinson CC, Town CD, Holmes KV. Isolation, propagation, genome analysis and epidemiology of HKU1 betacoronaviruses. J Gen Virol. 2014 Apr;95 (Pt 4):836–848. doi: 10.1099/vir.0.059832–

0. Epub 2014 Jan 6. PubMed PMID: 24394697; PubMed Central PMCID: PMC3973476.

7. Patrick D. M. Patrick DM, Petric M, Skowronski DM, Guasparini R, Booth TF, Krajden M, McGeer P, Bastien N, Gustafson L, Dubord J, Macdonald D, David ST, Srour LF, Parker R, Andonov A, Isaac-Renton J, Loewen N, McNabb G, McNabb A, Goh SH, Henwick S, Astell C, Guo JP, Drebot M, Tellier R, Plummer F, Brunham RC. An Outbreak of Human Coronavirus OC43 Infection and Serological Cross-reactivity with SARS Coronavirus. Can J Infect Dis Med Microbiol. 2006 Nov;17 (6):330–6. PubMed PMID: 18382647; PubMed Central PMCID: PMC2095096.

8. Vabret A, Mourez T, Gouarin S, Petitjean J, Freymuth F. An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin Infect Dis. 2003 Apr 15;36 (8):985–9. Epub 2003 Apr 4. PubMed PMID: 12684910; PubMed Central PMCID: PMC7109673.

9. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000 Oct;74 (19):8913–21. PubMed PMID: 10982334; PubMed Central PMCID: PMC102086.

10. Memish ZA, Perlman S, Van Kerkhove MD, Zumla A. Middle East respiratory syndrome. Lancet. 2020 Mar 28;395 (10229):1063–1077. doi: 10.1016/S0140–6736 (19) 33221–0. Epub 2020 Mar 4. Review. PubMed PMID: 32145185.

11. [5] Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020 Apr;92 (4):418–423. doi: 10.1002/jmv.25681. Epub 2020 Feb 7. Review. PubMed PMID: 31967327.

12. Wang L, Qiao X, Zhang S, Qin Y, Guo T, Hao Z, Sun L, Wang X, Wang Y, Jiang Y, Tang L, Xu Y, Li Y. Porcine transmissible gastroenteritis virus nonstructural protein 2 contributes to inflammation via NF-κB activation. Virulence. 2018;9 (1):1685–1698. doi: 10.1080/21505594.2018.1536632. PubMed PMID: 30322331; PubMed Central PMCID: PMC7000202.

13. Castaño-Rodriguez C, Honrubia JM, Gutiérrez-Álvarez J, DeDiego ML, Nieto-Torres JL, Jimenez-Guardeño JM, Regla-Nava JA, Fernandez-Delgado R, Verdia-Báguena C, Queralt-Martín M, Kochan G, Perlman S, Aguilella VM, Sola I, Enjuanes L. Role of Severe Acute Respiratory Syndrome Coronavirus Viroporins E, 3a, and 8a in Replication and Pathogenesis. mBio. 2018 May 22;9 (3). pii: e02325–17. doi: 10.1128/mBio.02325–

17. PubMed PMID: 29789363; PubMed Central PMCID: PMC5964350.

14. Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 2018 Jan;149:58–74. doi: 10.1016/j. antiviral.2017.11.001. Epub 2017 Nov 8. Review. PubMed PMID: 29128390.

15. Liu X, Wang XJ. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics. 2020 Feb 13. pii: S1673–8527 (20) 30027–8. doi: 10.1016/j.jgg.2020.02.001. [Epub ahead of print] PubMed PMID: 32173287.

16. Zheng, J., and Perlman, S. (2018) Immune responses in influenza A virus and human coronavirus infections: an ongoing battle between the virus and host, Curr. Opin. Virol., 28, 43–52, doi: 10.1016/j.coviro.2017.11.002.

17. Mazur I, Wurzer WJ, Ehrhardt C, Pleschka S, Puthavathana P, Silberzahn T, Wolff T, Planz O, Ludwig S. Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-kappaB-inhibiting activity. Cell Microbiol. 2007 Jul;9 (7):1683–94. Epub 2007 Feb

23. PubMed PMID: 17324159.

18. Dushianthan A, Grocott MP, Postle AD, Cusack R. Acute respiratory distress syndrome and acute lung injury. Postgrad Med J. 2011 Sep;87 (1031):612–22. doi: 10.1136/ pgmj.2011.118398. Epub 2011 Jun 4. Review. PubMed PMID: 21642654.

19. Peking University First Hospital. Favipiravir combined with tocilizumab in the treatment of Corona Virus Disease 2019. Retrieved March 26, 2020 Elsevier © https:// clinicaltrials.gov/ct2/show/NCT04310228? cond=…

20. Russell B, Moss C, George G, Santaolalla A, Cope A, Papa S, Van Hemelrijck M. Associations between immune-suppressive and stimulating drugs and novel Covid-19 — a systematic review of current evidence. ecancer. 2020;14:1022. doi: 10.3332/ecancer.2020.1022.

21. Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020 Feb 15;395 (10223):473–475. doi: 10.1016/S0140–6736 (20) 30317–2. Epub 2020 Feb 7. PubMed PMID: 32043983.

22. Matsuyama S., Kawase M., Nao N., Shirato K., Ujike M., Kamitani W., Shimojima M., Fukushi S. (2020) The inhaled corticosteroid ciclesonide blocks coronavirus RNA replication by targeting viral NSP15. BioRxiv. doi.org/10.1101/2020.03.11.987016. https://www.biorxiv.org/content/10.1101/2020.03.11.98.

23. WHO interim guidance 28 January 2020, Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected, URL: https:// www.cdc.gov/coronavirus/2019-ncov/hcp/clinica…

24. Weiss, S. L., Peters, M. J., Alhazzani, W., Agus, M. S. D., Flori, H. R., et al. (2020) Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ sysfunction in children, Pediatr. Crit. Care Med., 21, e52-e106, doi: 10.1097/PCC.0000000000002198.

25. Sidwell, R. W., Robins, R. K., and Hillyard, I. W. (1979) Ribavirin: an antiviral agent, Pharmacol. Ther., 6, 123–146.

26. Morgenstern, B., Michaelis, M., Baer, P. C., Doerr, H. W., and Cinatl, J. Jr. (2005) Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines, Biochem. Biophys. Res. Commun., 326, 905–908.

27. Gilbert, B. E., and Knight, V. (1986) Biochemistry and clinical applications of ribavirin, Antimicrob. Agents Chemother., 30, 201–205.

28. Delang, L., Abdelnabi, R., and Neyts, J. (2018) Favipiravir as a potential countermeasure against neglected and emerging RNA viruses, Antiviral. Res., 153, 85–94, doi: 10.1016/j. antiviral.2018.03.003.

29. Sheahan, T. P., Sims, A. C., Graham, R. L., Menachery, V. D., Gralinski, L. E., Case, J. B., Leist, S. R., Pyrc, K., Feng, J. Y., Trantcheva, I., Bannister, R., Park, Y., Babusis, D., Clarke, M. O., Mackman, R. L., Spahn, J. E., Palmiotti, C. A., Siegel, D., Ray, A. S., Cihlar, T., Jordan, R., Denison, M. R., and Baric, R. S. (2017) Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses, Sci. Transl. Med., 9, 396, doi: 10.1126/scitranslmed.aal3653.

30. Lo, M. K., Jordan, R., Arvey, A., Sudhamsu, J., Shrivastava-Ranjan, P., Hotard, A. L., Flint, M., McMullan, L. K., Siegel, D., Clarke, M. O., Mackman, R. L., Hui, H. C., Perron, M., Ray, A. S., Cihlar, T., Nichol, S. T., and Spiropoulou, C. F. (2017) GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses, Sci. Rep., 7, 43395, doi: 10.1038/srep43395.

31. Sheahan, T. P., Sims, A. C., Leist, S. R., Schäfer, A., Won, J., Brown, A. J., Montgomery, S. A., Hogg, A., Babusis, D., Clarke, M. O., Spahn, J. E., Bauer, L., Sellers, S., Porter, D., Feng, J. Y., Cihlar, T., Jordan, R., Denison, M. R., and Baric, R. S. (2020) Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV, Nat Commun., 11, 222, doi: 10.1038/s41467-019-13940-6.

32. Kleine-Weber, H., Elzayat, M. T., Hoffmann, M., and Pöhlmann S. (2018) Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein, Sci. Rep., 8, 16597, doi: 10.1038/s41598-018-34859-w.

33. Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z., Ding, Y., Zhao, Q., Zhang, X. C., Liao, M., Bartlam, M., and Rao, Z. (2008) Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design, J. Virol., 82, 2515–2527.

34. Al-Tawfiq, J. A., and Memish, Z. A. (2017) Update on therapeutic options for Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Expert. Rev. Anti. Infect. Ther., 15, 269–275, doi: 10.1080/14787210.2017.1271712.

35. Liu, X., and Wang, X. J. (2020) Potential inhibitors for 2019-nCoV coronavirus M protease from clinically approved medicines, BioRxiv, doi: 10.1101/2020.01.29.924100.

36. Chen F, Chan KH, Jiang Y et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 2004; 31:69–75. PMID: 1528861754.

37. Yao TT, Qian JD, Zhu WY et al. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treat-ment option. J Med Virol 2020 Feb 27. [Epub ahead of print] PMID: 32104907

38. Gautret P, Lagier J, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020 Mar 20. [Epub ahead of print] PMID: 32205204

39. Colson, P., Rolain, J. M., and Raoult, D. (2020) Chloroquine for the 2019 novel coronavirus SARS-CoV-2, Int. J. Antimicrob. Agents, 105923, doi: 10.1016/j.ijantimicag.2020.105923, [Epub ahead of print].

40. Rolain, J. M., Colson, P., and Raoult, D. (2007) Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century, Int. J. Antimicrob. Agents, 30, 297–308.

41. Gao, J., Tian, Z., Yang, X. (2020) Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci. Trends, 14, 72–73, doi: 10.5582/bst.2020.01047.

42. Xia, S., Yan, L., Xu, W., Agrawal, A. S., Algaissi, A., Tseng, C. K., Wang, Q., Du, L., Tan, W., Wilson, I. A., Jiang, S., Yang, B., and Lu, L. (2019) A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike, Sci. Adv., 5, eaav4580, doi: 10.1126/sciadv.aav4580.

43. Kleine-Weber, H., Elzayat, M. T., Hoffmann, M., and Pöhlmann S. (2018) Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein, Sci. Rep., 8, 16597, doi: 10.1038/s41598-018-34859-w.

44. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., and Pöhlmann, S. (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, doi: 10.1016/j.cell.2020.02.052, [Epub ahead of print].

45. Zhirnov, O. P. (2015) Combined aerosol composition based on protease inhibitors, RF Patent No 2711080.

46. Zhirnov, O. P. (2015) Pharmaceutical aerosol composition of a protease inhibitor, EAPO Patent No 034991

47. Zhirnov, O. P., Klenk, H. D., and Wright, P. F. (2011) Aprotinin and similar protease inhibitors as drugs against influenza, Antiviral. Res., 92, 27–36, doi: 10.1016/j. antiviral.2011.07.014.

48. Zhirnov, O. P., Poyarkov, S. V., Malyshev, N. A. (2009) Targets of the Antiviral and Antiphlogogenic Action of Aprotinin: Prospects of New Usage, Pulmonology, 33, 27–33.

49. Kido H, Takahashi E, Kimoto T. Role of host trypsin-type serine proteases and influenza virus-cytokine-trypsin cycle in influenza viral pathogenesis.Pathogenesis-based therapeutic options. Biochimie. 2019 Nov;166:203–213. doi:10.1016/j.biochi.2019.09.006. Epub 2019 Sep 10. Review. PubMed PMID: 31518617.

50. Wrapp, D., Nianshuang, W., Kizzmekia, S., Corbett, J. A., Goldsmith, C. L. H., Olubukola, A., Barney, S., Graham, J., and McLellan, S. (2020) Cryo-EM Structure of the 2019-nCoV spike in the prefusion conformation, BioRxiv, doi: 10.1101/2020.02.11.944462.

51. Ashour, H. M., Elkhatib, W. F., Rahman, M. M., and Elshabrawy, H A. (2020) Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks, Pathogens. 9, pii: E186, doi: 10.3390/pathogens9030186.

52. Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G., and Decroly, E. (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furinlike cleavage site absent in CoV of the same clade, Antiviral Res., 176, 104742, doi: 10.1016/j.antiviral.2020.104742.

53. Peng, M., Watanabe, S., Chan, K. W. K., He, Q., Zhao, Y., Zhang, Z., Lai, X., Luo, D., Vasudevan, S. G., and Li, G. (2017) Luteolin restricts dengue virus replication through inhibition of the proprotein convertase furin, Antiviral. Res., 143, 176–185, doi: 10.1016/j.antiviral.2017.03.026.

54. Shiryaev, S. A., Remacle, A. G., Ratnikov, B. I., Nelson, N. A., Savinov, A. Y., Wei, G., Bottini, M., Rega, M. F., Parent, A., Desjardins, R., Fugere. M., Day, R., Sabet, M., Pellecchia, M., Liddington, R. C., Smith, J. W., Mustelin, T., Guiney, D. G., Lebl, M., and Strongin, A. Y. (2007) Targeting host cell furin proprotein convertases as a therapeutic strategy against bacterial toxins and viral pathogens, J. Biol. Chem., 282, 20847–20853.

55. Braun, E., and Sauter, D. (2019) Furin-mediated protein processing in infectious diseases and cancer, Clin. Transl. Immunology., 8, e1073, doi: 10.1002/cti2.1073.

56. Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J. K., Cleary, P., Khaw, F. M., Lim, W. S., Makki, S., Rooney, K. D., Convalescent Plasma Study Group, Nguyen-Van-Tam, J. S., Beck, C. R. Mateus, A. L. P., Reuter, S., Shin J., Xu, X., Pereyaslov, D., Papieva, I., Tegnell, A., Englund, H., Elfving, A., Cox, R., Mohn, K. G. -I., and Jenkins, Y. F. (2015) The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis, J. Infect. Dis., 211, 80–90, doi: 10.1093/infdis/jiu396.

57. Goo, J., Jeong, Y., Park, Y. S., Yang, E., Jung, D. I., Rho, S., Park, U., Sung, H., Park, P. G., Choi, J. A., Seo, S. H., Cho, N. H., Lee, H., Lee, J. M., Kim, J. O., and Song, M. (2020) Characterization of novel monoclonal antibodies against MERS-coronavirus spike protein, Virus Res., 278, 197863, doi: 10.1016/j.virusres.2020.197863.

58. Beigel, J. H., Voell, J., Kumar, P., Raviprakash, K., Wu, H., Jiao, J. A., Sullivan, E., Luke, T., and Davey, R. T. Jr. (2018) Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study, Lancet Infect. Dis., 18, 410–418, doi: 10.1016/S1473–3099 (18) 30002–1.

59. Shanmugaraj, B., Siriwattananon, K., Wangkanont, K., Phoolcharoen, W. (2020) Perspectives on monoclonal antibody therapy as potential therapeutic intervention for Coronavirus disease-19 (COVID-19), Asian Pac J Allergy Immunol., 38, 10–18, doi: 10.12932/AP-200220–0773.

60. Ko, J. H., Seok, H., Cho, S. Y., Ha, Y. E., Baek, J. Y., Kim, S. H., Kim. Y. J., Park, J. K., Chung, C. R., Kang, E. S., Cho, D., Müller, M. A., Drosten, C., Kang, C. I., Chung, D. R., Song, J. H., and Peck, K. R. (2018) Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience, Antivir. Ther., 23, 617–622, doi: 10.3851/IMP3243.

61. Arabi, Y. M., Hajeer, A. H., Luke, T., Raviprakash, K., Balkhy, H., Johani, S., Al-Dawood, A., Al-Qahtani, S., Al-Omari, A., Al-Hameed, F., Hayden, F. G., Fowler, R., Bouchama, A., Shindo, N., Al-Khairy, K., Carson, G., Taha, Y., Sadat, M., and Alahmadi, M. (2016) Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, Saudi Arabia. Emerg Infect Dis., 22, 1554–1561, doi: 10.3201/eid2209.151164.

62. Xu X, Han M, LI T, et al. Effect treatment of severe COVID-19 patients with tocilizumab. ChinaXiv.20200300026.v1

63. Wan, Y., Shang, J., Sun, S., Tai, W., Chen, J., Geng, Q., He, L., Chen, Y., Wu, J., Shi, Z., Zhou, Y., Du, L., and Li, F. (2020) Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry, J. Virol., 94, pii: e02015–19, doi: 10.1128/JVI.02015– 19.

64. Farci P, Roskams T, Chessa L, Peddis G, Mazzoleni AP, Scioscia R, Serra G, Lai ME, Loy M, Caruso L, Desmet V, Purcell RH, Balestrieri A. Long-term benefit of interferon alpha therapy of chronic hepatitis D: regression of advanced hepatic fibrosis. Gastroenterology. 2004 Jun;126 (7):1740–9. PubMed PMID: 15188169.

65. Cinatl, J., Morgenstern, B., Bauer, G., Chandra, P., Rabenau, H., and Doerr, H. W. (2003) Treatment of SARS with human interferons, Lancet. 362, 293–294.

66. Yin, Y., and Wunderink, R. G. (2018) MERS, SARS and other coronaviruses as causes of pneumonia, Respirology, 23, 130–137, doi: 10.1111/resp.13196.

67. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., and Cao, B. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395, 497–506, doi: 10.1016/S0140–6736 (20) 30183–5.

68. Mubarak, A., Alturaiki, W., and Hemida, M. G. (2019) Middle east respiratory syndrome coronavirus (MERS-CoV): infection, immunological response, and vaccine development, J. Immunol. Res., 2019, 6491738, doi: 10.1155/2019/6491738.

69. Channappanavar, R., Fehr, A. R., Zheng, J., Wohlford-Lenane, C., Abrahante, J. E., Mack, M., Sompallae, R., McCray, P. B. Jr., Meyerholz, D. K., and Perlman, S. (2019) IFN-I response timing relative to virus replication determines MERS coronavirus infection outcomes, J. Clin. Invest., 130, 3625–3639, doi: 10.1172/JCI126363.

70. Lu, Y., Hardes, K., Dahms, S. O., Böttcher-Friebertshäuser, E., Steinmetzer, T., Than, M. E., Klenk, H. D., and Garten, W. (2015) Peptidomimetic furin inhibitor MI-701 in combination with oseltamivir and ribavirin efficiently blocks propagation of highly pathogenic avian influenza viruses and delays high level oseltamivir resistance in MDCK cells, Antiviral Res., 120, 89–100, doi: 10.1016/j.antiviral.2015.05.006.

Семейство коронавирусов как одно из самых многочисленных включает два подсемейства (Orthocoronavirinae, Letovirinae), пять родов и более 40 вирусных видов. Вирусы этого семейства вызывают заболевания человека и различных животных, включая кошек, летучих мышей, верблюдов, свиней, птиц и т. п. [1]. Патогенные для человека коронавирусы входят в три основных рода: альфа-, бетаи гамма-коронавирусы [2, 3]. Первые сообщения об идентификации коронавирусов у птиц и грызунов датированы еще 1930-ми гг. [4]. У человека данные вирусы, преимущественно альфа- и бета-коронавирусы, вызывали поражение респираторного тракта с характерными симптомами простуды и невысокой смертностью 0,4– 3,4 % в разных регионах планеты [5, 6], лишь в некоторых региональных вспышках достигая уровня смертности 8 % [7, 8]. Имеются также сообщения о связи рассеянного склероза с персистенцией коронавирусов в организме человека [9]. Однако начиная с 2002 г. у человека стали обнаруживаться новые разновидности коронавирусов рода бета-коронавирусов, которые имели значительную генетическую близость коронавирусам летучих мышей и обладали способностью вызывать у человека тяжелую пневмонию, так называемую атипичную пневмонию, имеющую необычные очаговые морфологические признаки и высокую смертность на уровне 9–36 % [2, 10].

Цель настоящего исследования — проанализировать и концептуально обобщить современные знания по лекарственной химиотерапии инфекций, вызываемых коронавирусами у человека, и на этой основе сформулировать принципы оптимального соотношения этиотропного и патогенетического подходов в лечении данной вирусной болезни.

Коронавирусы имеют липидную оболочку (оболочечные вирусы) и геномную одноцепочечную РНК размером 25–30 × 103 нуклеотидов у разных вирусов [1]. Геномная РНК коронавирусов имеет позитивную полярность, что означает ее способность прямого транслирования рибосомами с образованием вирусного полипротеина 1ab (м.в. ~800 кДа), который котрансляционно расщепляется на 16 неструктурных (не входящих в состав вирусных частиц) белков nsp1 — nsp16 (рис. 1). Такое многоступенчатое расщепление осуществляется аутопротеолитически, когда функцию протеазы выполняют домены nsp3 и nsp5, имеющие свойства цистеиновых протеаз [14, 15].

Для Цитирования:
, Коронавирусная инфекция: принципы этиотропной химиотерапии. Новейшие зарубежные и отечественные лекарственные препараты: фармакотерапия, фармакодинамика, фармакокинетика. 2020;3.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: