Данная разработка относится к фотонике — научной дисциплине, которая появилась в 1960-х гг. одновременно с появлением лазеров. Основная идея фотоники — сделать то же, что делает электроника, но с заменой электронов на кванты света — фотоны. Главное их преимущество в том, что они практически не взаимодействуют друг с другом и со средой, в которой распространяются, и потому более предпочтительны для передачи информации, чем электроны. Это в первую очередь может быть использовано в компьютерах, для которых главным показателем является быстродействие.
Но в то время как основа современных электронных устройств — транзисторы имеют характерные размеры менее 100 нанометров, размеры прототипов оптических транзисторов остались на масштабах в несколько микрометров. Структуры же, способные в этом смысле конкурировать с электроникой, такие как плазмонные наночастицы, отличались низкой эффективностью и большими потерями. Так что ситуация с компактностью для фотонных схем представлялась тупиковой.
Но три года назад исследователи одновременно из нескольких научных групп наткнулись на важный эффект: в наночастицах кремния были обнаружены сильные резонансы в видимой области спектра, так называемые магнитные дипольные резонансы. Данный резонанс характеризуется сильной локализацией световых волн на субволновых масштабах внутри наночастиц. Эффект заинтересовал многих исследователей, однако, по словам Максима Щербакова, первого автора статьи в Nano Letters, никто почему-то не по думал о том, что это открытие может лечь в основу компактного и очень быстрого фотонного переключателя.
Наночастицы удалось изготовить в Австралийском национальном университете методом электроннолучевой литографии с последующим плазменным травлением. Это было сделано аспирантом Александром Шороховым, который проходил там стажировку в рамках стипендии Президента РФ. Полученные образцы были направлены в Москву, и все последующие эксперименты с ними проводились на физическом факультете МГУ в лаборатории нанооптики и метаматериалов.