По всем вопросам звоните:

+7 495 274-22-22

УДК: 543.645 DOI:10.33920/med-06-2002-02

Использование метода AlphaLISA в биоаналитических исследованиях

Станислав Андреевич Черепушкин научный сотрудник, лаборатория прикладной вирусологии и биотехнологии, ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н. Ф. Гамалеи» Министерства здравоохранения Российской Федерации, тел: +7 977 807 4186, E-mail: cherepushkin1@gmail.com, ORCID ID 0000-0002-1734-5369

С развитием применения и производства биотерапевтических препаратов растет необходимость в точных, чувствительных и надежных биоаналитических методах. Для количественного измерения концентрации макромолекул в сложных биологических матриксах чаще всего используются иммуноферментный анализ и другие методы связывания лиганда. Одной из альтернатив ИФА является хемилюминесцентный метод связывания лиганда AlphaLISA — гибкий гомогенный (без стадий отмывок) метод с большой производительностью, потенциалом к автоматизации, более широким аналитическим диапазоном и большей чувствительностью. С начала 2000-х гг. этот метод используется в науке, медицине и разработке лекарственных препаратов для различных задач, включая количественное определение аналитов, изучение иммуногенности, белок-белковых взаимодействий, активности ферментов, посттрансляционных модификаций и эпигенетики. В настоящем обзоре рассматриваются принципы и особенности метода AlphaLISA и его использования в биоаналитических исследований (фармакокинетика и иммуногенность) и для решения смежных задач — высокопроизводительный скрининг при разработке лекарственных препаратов, медицинская диагностика с использованием онкомаркеров и эпидемиологические задачи выявления патогенов.

Литература:

1. Приложение 6 к Правилам проведения исследований биоэквивалентности лекарственных препаратов в рамках Евразийского экономического союза. Требования к валидации биоаналитических методик испытаний и анализу исследуемых биологических образцов (2016).

2. FDA/ Bioanalytical Method Validation, Guidance for Industry (2018).

3. Guideline on bioanalytical method validation EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2** (2012).

4. Правила проведения исследований биологических лекарственных средств Евразийского экономического союза (глава 11 «Оценка иммуногенности терапевтических белков, полученных с использованием биотехнологических методов», глава 12 «Оценка иммуногенности препаратов моноклональных антител, предназначенных для применения в клинической практике in vivo») (2016).

5. Guideline on Immunogenicity assessment of therapeutic proteins EMEA/CHMP/ BMWP/42832/2005 Rev1 (2017).

6. Immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use. EMA/CHMP/BMWP/ 86289/2010 (2012).

7. FDA/ Immunogenicity Testing of Therapeutic Protein Products — Developing and Validating Assays for Anti-Drug Antibody Detection, Guidance for Industry (2019).

8. Damen, Carola W. N., Jan H. M. Schellens, and Jos H. Beijnen. Bioanalytical Methods for the Quantification of Therapeutic Monoclonal Antibodies and Their Application in Clinical Pharmacokinetic Studies // Human Antibodies 2009; 18 (3): 47–73. https:// doi.org/10.3233/HAB-2009–0206.

9. Simonov VM, Pantushenko MS, Kazarov AA, Markova OA, Poroshin GN. Development and validation of a method for determination of Eculizumab concentration in human plasma by biolayer interferometry // BIOpreparations. Prevention, Diagnosis, Treatment 2017; 17 (3): 158–164.

10. Todoroki, Kenichiro, Hajime Mizuno, Eiji Sugiyama, and Toshimasa Toyo’oka. «Bioanalytical Methods for Therapeutic Monoclonal Antibodies and Antibody — Drug Conjugates: A Review of Recent Advances and Future Perspectives // Journal of Pharmaceutical and Biomedical Analysis 2020; 179. https://doi.org/10.1016/j. jpba.2019.112991.

11. Bielefeld-Sevigny, Martina. 2009. «AlphaLISA Immunoassay Platform — the ‘NoWash’ High-Throughput Alternative to ELISA // Assay and Drug Development Technologies 7 (1): 90–92. https://doi.org/10.1089/adt.2009.9996.

12. Eglen, Richard M, Terry Reisine, Philippe Roby, Nathalie Rouleau, Chantal Illy, Roger Bossé, and Martina Bielefeld. The Use of AlphaScreen Technology in HTS: Current Status // Current Chemical Genomics 2008; 1: 2–10. https://doi.org/10.217 4/1875397300801010002.

13. Ullman EF, Kirakossian H, Singh S, Wu ZP, Irvin BR, Pease JS, Switchenko AC, Irvine JD, Dafforn A, Skold CN. Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence // Proc Natl Acad Sci U S A. 1994 Jun; 91 (12): 5426–5430. doi:10.1073/pnas.91.12.5426.

14. E F Ullman, H Kirakossian, A C Switchenko, J Ishkanian, M Ericson, C A Wartchow, M Pirio, J Pease, B R Irvin, S Singh, R Singh, R Patel, A Dafforn, D Davalian, C Skold, N Kurn, D B Wagner, Luminescent oxygen channeling assay (LOCI): sensitive, broadly applicable homogeneous immunoassay method // Clinical Chemistry 1996; 42 (9): 1518–1526, https://doi.org/10.1093/clinchem/42.9.1518.

15. Rohman, Mattias, and Jonathan Wingfield. Chapter 3 within Drug Discovery // New York 2016; 1439: 47–63. https://doi.org/10.1007/978-1-4939-3673-1.

16. Kimura, Hideharu, Kazuko Sakai, Tokuzo Arao, Tatsu Shimoyama, Tomohide Tamura, and Kazuto Nishio. Antibody-Dependent Cellular Cytotoxicity of Cetuximab against Tumor Cells with Wild-Type or Mutant Epidermal Growth Factor Receptor // Cancer Science 2007; 98 (8): 1275–80. https://doi.org/10.1111/j.1349–7006.2007.00510.x.

17. Zanese, Marion, Giovanni Tomaselli, Valérie Roullot-Lacarrière, Maïté Moreau, Luigi Bellocchio, Agnès Grel, Giovanni Marsicano, Nathalie Sans, Monique Vallée, and Jean Michel Revest. Alpha Technology: A Powerful Tool to Detect Mouse Brain Intracellular Signaling Events // Journal of Neuroscience Methods 2020; 332. https://doi.org/10.1016/j.jneumeth.2019.108543.

18. Xiong Y, Wu Y, Luo S, et al. Development of a novel immunoassay to detect interactions with the transactivation domain of p53: application to screening of new drugs // Sci Rep. 2017; 7 (1): 9185. Published 2017 Aug 23. doi:10.1038/s41598-017-09574-7.

19. Bossé, R. et al. (2001) Principles of AlphaScreen. Application Note ASC-001, PerkinElmer Life Science, Inc., Montreal, Canada https://www.perkinelmer.com/lab-solutions/resources/docs/APP_AlphaScreen_Principles.pdf.

20. AlphaLISA Assay Development Guide, PerkinElmer. https://iccb.med.harvard.edu/files/iccb/files/alphalisa-assay-development-guide_onepage_rev4_oct08.pdf.

21. Yu, Zeta Tak For, Huijiao Guan, Mei Ki Cheung, Walker M. McHugh, Timothy T. Cornell, Thomas P. Shanley, Katsuo Kurabayashi, and Jianping Fu. Rapid, Automated, Parallel Quantitative Immunoassays Using Highly Integrated Microfluidics and AlphaLISA // Scientific Reports 2015; 5 (March): 1–12. https:// doi.org/10.1038/srep11339.

22. Pulido-Olmo, Helena, Elena Rodríguez-Sánchez, José Alberto Navarro-García, María G. Barderas, Gloria álvarez-Llamas, Julián Segura, Marisol FernándezAlfonso, Luis M. Ruilope, and Gema Ruiz-Hurtado. Rapid, Automated, and Specific Immunoassay to Directly Measure Matrix Metalloproteinase-9-Tissue Inhibitor of Metalloproteinase-1 Interactions in Human Plasma Using AlphaLISA Technology: A New Alternative to Classical ELISA // Frontiers in Immunology 2017; 8 (JUL): 1–12. https://doi.org/10.3389/fimmu.2017.00853.

23. Spengler, Mark, Michael Adler, and Christof M. Niemeyer. Highly Sensitive LigandBinding Assays in Pre-Clinical and Clinical Applications: Immuno-PCR and Other Emerging Techniques // Analyst 2015; 140 (18): 6175–94. https://doi.org/10.1039/ c5an00822k.

24. Yeung, David, Shawn Ciotti, Shobha Purushothama, Elham Gharakhani, Geoffrey Kuesters, Brian Schlain, Chase Shen, Douglas Donaldson, and Alvydas Mikulskis. «Evaluation of Highly Sensitive Immunoassay Technologies for Quantitative Measurements of Sub-Pg/ML Levels of Cytokines in Human Serum // Journal of Immunological Methods 2016; 437: 53–63. https://doi.org/10.1016/j.jim.2016.08.003.

25. AlphaLISA immunoassay kits: Limits of detection and range. Technical Brief. https://www. perkinelmer.com/lab-solutions/ resources/docs/ TCH_AlphaLISA_LOD_ range.pdf.

26. Peters, Christian D., Bente Jespersen, and Rikke Norregaard. AlphaLISA versus ELISA-Based Detection of Interleukin 18 in Healthy Subjects and Patients with EndStage Renal Disease // Scandinavian Journal of Clinical and Laboratory Investigation 2012; 72 (8): 583–92. https://doi.org/10.3109/00365513.2012.713175.

27. Leary, Beth A., Rosemary Lawrence-Henderson, Carolyn Mallozzi, Mireia Fernandez Ocaña, Nicole Duriga, Denise M. O’Hara, Mania Kavosi, Qiang Qu, and Alison P. Joyce. Bioanalytical Platform Comparison Using a Generic Human IgG PK Assay Format // Journal of Immunological Methods 2013. 397 (1–2): 28–36. https://doi.org/10.1016/j. jim.2013.08.009.

28. Collet-Brose, Justine, Pierre Jean Couble, Maureen R. Deehan, Robert J. Nelson, Walter G. Ferlin, and Sabrina Lory. Evaluation of Multiple Immunoassay Technology Platforms to Select the Anti-Drug Antibody Assay Exhibiting the Most Appropriate Drug and Target Tolerance // Journal of Immunology Research 2016. https://doi. org/10.1155/2016/5069678.

29. Immunogenicity Assessment Using the AlphaLISA technology, PerkinElmer / https://www.perkinelmer.com/lab-solutions/resources/docs/APP_ Immunogenicity _Assessment _AlphaLISA_technology.pdf.

30. Development of Pharmacokinetic (PK) Assays for Detecting Biosimilars Targeting TNFα Using AlphaLISA, PerkinElmer https://www.perkinelmer.com/lab-solutions/ resources/docs/APP_AlphaLISA_Pharmacokinetic_TNFa.pdf.

31. Kaendler, Kerstin, Andrew Warren, Peter Lloyd, Jennifer Sims, and Denise Sickert. Evaluation of Dried Blood Spots for the Quantification of Therapeutic Monoclonal Antibodies and Detection of Anti-Drug Antibodies // Bioanalysis 2013; 5 (5): 613–22. https://doi.org/10.4155/bio.13.11.

32. Cauchon, Elizabeth, Susana Liu, M. David Percival, Steve E. Rowland, Daigen Xu, Christoph Binkert, Panja Strickner, and Jean Pierre Falgueyret. Development of a Homogeneous Immunoassay for the Detection of Angiotensin I in Plasma Using AlphaLISA Acceptor Beads Technology // Analytical Biochemistry 2009; 388 (1): 134–39. https://doi.org/10.1016/j.ab.2009.02.031.

33. Dehdashti SJ, Zheng W, Gever JR, et al. A high-throughput screening assay for determining cellular levels of total tau protein // Curr Alzheimer Res. 2013; 10 (7): 679–687. doi:10.2174/15672050113109990143

34. Chau DM, Shum D, Radu C, et al. A novel high throughput 1536-well Notch1 γ-secretase AlphaLISA assay // Comb Chem High Throughput Screen. 2013; 16 (6): 415–424. doi: 10.2174/1386207311316060001.

35. Wang, Hongjie, Adel Nefzi, Gregg B. Fields, Madepalli K. Lakshmana, and Dmitriy Minond. AlphaLISA-Based High-Throughput Screening Assay to Measure Levels of Soluble Amyloid Precursor Protein α // Analytical Biochemistry 2014. 459: 24–30. https://doi.org/10.1016/j.ab.2014.05.007.

36. Zhang, Xi, Goce Dimeski, and Chamindie Punyadeera. Validation of an Immunoassay to Measure Plasminogen-Activator Inhibitor-1 Concentrations in Human Saliva // Biochemia Medica 2014; 24 (2): 258–65. https://doi.org/10.11613/BM.2014.028.

37. Zhao, Hui, Guanfeng Lin, Tiancai Liu, Junyu Liang, Zhiqi Ren, Rongliang Liang, Baihong Chen, Wenhua Huang, and Yingsong Wu. Rapid Quantitation of Human Epididymis Protein 4 in Human Serum by Amplified Luminescent Proximity Homogeneous Immunoassay (AlphaLISA) // Journal of Immunological Methods 2016; 437: 64–69. https://doi.org/10.1016/j.jim.2016.08.006.

38. Zhao, Hongli, Jue Zhao, Jiapeng Hou, Siqing Wang, Yu Ding, Boxun Lu, and Jian Wang. AlphaLISA Detection of Alpha-Synuclein in the Cerebrospinal Fluid and Its Potential Application in Parkinson’s Disease Diagnosis // Protein and Cell 2017; 8 (9): 696–700. https://doi.org/10.1007/s13238-017-0424-4.

39. Baldo B, Sajjad MU, Cheong RY, et al. Quantification of Total and Mutant Huntingtin Protein Levels in Biospecimens Using a Novel alphaLISA Assay // eNeuro. 2018; 5 (4): ENEURO.0234–18.2018. Published 2018 Oct 10. doi:10.1523/ ENEURO.0234–18.2018.

40. Yan L, Dong X, Gao J, et al. A novel rapid quantitative method reveals stathmin-1 as a promising marker for esophageal squamous cell carcinoma // Cancer Med. 2018; 7 (5): 1802–1813. doi:10.1002/cam4.1449.

41. Wen, Chu Ling, Kuan Yu Chen, Chih Ta Chen, Jiing Guang Chuang, Pan Chyr Yang, and Lu Ping Chow. Development of an AlphaLISA Assay to Quantify Serum CoreFucosylated E-Cadherin as a Metastatic Lung Adenocarcinoma Biomarker // Journal of Proteomics 2012; 75 (13): 3963–76. https://doi.org/10.1016/j.jprot.2012.05.015.

42. Huang B, Yu H, Bao J, Zhang M, Green WL, Wu SY. A Homogeneous Time-Resolved Fluorescence Immunoassay Method for the Measurement of Compound W. Biomark Insights. 2018;13:1177271918757484. Published 2018 Feb 6. doi:10.1177/1177271918757484

43. He, An, Tian Cai Liu, Zhi Ning Dong, Zhi Qi Ren, Jing Yuan Hou, Ming Li, and Ying Song Wu. A Novel Immunoassay for the Quantization of CYFRA 21–1 in Human Serum // Journal of Clinical Laboratory Analysis 2013; 27 (4): 277–83. https://doi. org/10.1002/jcla.21597.

44. Zou, Li Ping, Tian Cai Liu, Guan Feng Lin, Zhi Ning Dong, Jing Yuan Hou, Ming Li, and Ying Song Wu. Alphalisa for the Determination of Median Levels of the Free β Subunit of Human Chorionic Gonadotropin in the Serum of Pregnant Women // Journal of Immunoassay and Immunochemistry 2013; 34 (2): 134–48. https://doi.org /10.1080/15321819.2012.690358.

45. Wu, Fei, Lin Wang, Qiaomei Guo, Mingna Zhao, Hongchen Gu, Hong Xu, and Jiatao Lou. A Homogeneous Immunoassay Method for Detecting Interferon-Gamma in Patients with Latent Tuberculosis Infection // Journal of Microbiology and Biotechnology 2015; 26 (3): 588–95. https://doi.org/10.4014/jmb.1507.07102.

46. Du, Guifang, Xiaomei Yang, Mu Hu, Chengcheng Hao, Yanan Gu, Xiuyi Zhi, Wen G. Jiang, Junqi He, and Shan Cheng. Designing a Novel High-Throughput AlphaLISA Assay to Quantify Plasma NHERF1 as a Non-Small Cell Lung Cancer Biomarker // RSC Advances 2015; 5 (102): 84164–71. https://doi.org/10.1039/ c5ra16502d.

47. Li P, Chen Z, Liu B, et al. Establishment of a novel homogeneous nanoparticle-based assay for sensitive procalcitonin detection of ultra low-volume serum samples // Int J Nanomedicine. 2018; 13: 5395–5404. Published 2018 Sep 13. doi:10.2147/IJN.S173776.

48. Muñoz-Prieto, A., S. Martínez-Subiela, J. J. Cerón, and A. Tvarijonaviciute. A New Highly Sensitive Immunoassay for the Detection of Adiponectin in Serum and Saliva of Dogs and Its Application in Obesity and Canine Leishmaniosis // Research in Veterinary Science 2019; 125 (July): 374–81. https://doi.org/10.1016/j.rvsc.2019.07.019.

49. Mechaly, Adva, Noam Cohen, Shay Weiss, and Eran Zahavy. A Novel Homogeneous Immunoassay for Anthrax Detection Based on the AlphaLISA Method: Detection of B. Anthracis Spores and Protective Antigen (PA) in Complex Samples // Analytical and Bioanalytical Chemistry 2013; 405 (12): 3965–72. https://doi.org/10.1007/ s00216-013-6752-1.

50. Armstrong, Cheryl M., Leah E. Ruth, Joseph A. Capobianco, Terence P. Strobaugh, Fernando M. Rubio, and Andrew G. Gehring. Detection of Shiga Toxin 2 Produced by Escherichia Coli in Foods Using a Novel AlphaLISA // Toxins 2018; 10 (11): 1–14. https://doi.org/10.3390/toxins10110422.

51. Zhao, Junqing, Qingyu Lv, Peng Liu, Liyuan Guo, Liwen Zhang, Yuling Zheng, Lihua Ming, Decong Kong, Hua Jiang, and Yongqiang Jiang. AlphaLISA for Detection of Staphylococcal Enterotoxin B Free from Interference by Protein A // Toxicon 2019; 165 (November 2018): 62–68. https://doi.org/10.1016/j.toxicon.2019.04.016.

52. Wang, Hai-Bo, Tian Du, Wei-Gang Li, Jun-Hua Zhao, Ze Yang, and Qiu-Hua Mo. The Establishment and Clinical Evaluation of a Novel, Rapid, No-Wash One-Step Immunoassay for the Detection of Dengue Virus Non-Structural Protein 1 // Journal of Virological Methods 2020; 276 (June 2019): 113793. https://doi.org/10.1016/j. jviromet.2019.113793.

53. Liu, Tian Cai, He Huang, Zhi Ning Dong, An He, Ming Li, Ying Song Wu, and Wei Wen Xu. Development of an Amplified Luminescent Proximity Homogeneous Assay for Quantitative Determination of Hepatitis B Surface Antigen in Human Serum // Clinica Chimica Acta 2013; 426: 139–44. https://doi.org/10.1016/j.cca.2013.09.013.

54. Kimpston-Burkgren, Kay, Juan Carlos Mora-Díaz, Philippe Roby, Jordan BjustromKraft, Rodger Main, Roger Bosse, and Luis Gabriel Giménez-Lirola. 2020. «Characterization of the Humoral Immune Response to Porcine Epidemic Diarrhea Virus Infection under Experimental and Field Conditions Using an AlphaLISA Platform // Pathogens 2020; 9 (3): 233. https://doi.org/10.3390/PATHOGENS9030233.

55. Muneoka, Satoshi, Ryuichi Nakamura, Masato Hoshino, Kimiaki Utsugisawa, and Tomohiro Makino. Development of a Novel Immunoassay to Select Antibodies against Intact Membrane Antigens by Using the Homogeneous AlphaLISA System // Journal of Bioscience and Bioengineering 2018; 126 (4): 522–26. https://doi.org/10.1016/j. jbiosc.2018.04.018.

56. Wu, Qiang, Ho Young Lee, Pin Yee Wong, Guoying Jiang, and Hélène Gazzano-Santoro. Development and Applications of AlphaScreen-Based FcRn Binding Assay to Characterize Monoclonal Antibodies // Journal of Immunological Methods 2015. https://doi.org/10.1016/j.jim.2015.03.012.

1. Appendix No. 6 to the Rules for Conducting Bioequivalence Studies of Drugs in the Eurasian Economic Union “Requirements for the validation of bioanalytical test methods and analysis of the studied biological samples” (2016)

2. FDA/ Bioanalytical Method Validation, Guidance for Industry (2018)

3. Guideline on bioanalytical method validation EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2** (2012)

4. Rules for conducting research on biological drugs of the Eurasian Economic Union (Chapter 11 “Assessing immunogenicity of therapeutic proteins obtained using biotechnological methods”; Chapter 12 “Assessing immunogenicity of monoclonal antibody drugs intended for use in clinical practice in vivo”) (2016)

5. Guideline on Immunogenicity assessment of therapeutic proteins EMEA/CHMP/ BMWP/42832/2005 Rev1 (2017)

6. Immunogenicity assessment of monoclonal antibodies intended for in vivo clinical use. EMA/CHMP/BMWP/ 86289/2010 (2012)

7. FDA/ Immunogenicity Testing of Therapeutic Protein Products — Developing and Validating Assays for Anti-Drug Antibody Detection, Guidance for Industry (2019)

8. Damen, Carola W.N., Jan H.M. Schellens, and Jos H. Beijnen. 2009. “Bioanalytical Methods for the Quantification of Therapeutic Monoclonal Antibodies and Their Application in Clinical Pharmacokinetic Studies.” Human Antibodies 18 (3): 47–73. https://doi.org/10.3233/HAB-2009-0206.

9. Simonov VM, Pantushenko MS, Kazarov AA, Markova OA, Poroshin GN. Development and validation of a method for determination of Eculizumab concentration in human plasma by biolayer interferometry. BIOpreparations. Prevention, Diagnosis, Treatment 2017; 17(3): 158–164.

10. Todoroki, Kenichiro, Hajime Mizuno, Eiji Sugiyama, and Toshimasa Toyo’oka. 2020. “Bioanalytical Methods for Therapeutic Monoclonal Antibodies and Antibody– Drug Conjugates: A Review of Recent Advances and Future Perspectives.” Journal of Pharmaceutical and Biomedical Analysis 179. https://doi.org/10.1016/j. jpba.2019.112991.

11. Bielefeld-Sevigny, Martina. 2009. “AlphaLISA Immunoassay Platform- the ‘No-Wash’ High-Throughput Alternative to ELISA.” Assay and Drug Development Technologies 7 (1): 90–92. https://doi.org/10.1089/adt.2009.9996.

12. Eglen, Richard M, Terry Reisine, Philippe Roby, Nathalie Rouleau, Chantal Illy, Roger Bossé, and Martina Bielefeld. 2008. “The Use of AlphaScreen Technology in HTS: Current Status.” Current Chemical Genomics 1: 2–10. https://doi.org/10.2174 /1875397300801010002.

13. Ullman EF, Kirakossian H, Singh S, Wu ZP, Irvin BR, Pease JS, Switchenko AC, Irvine JD, Dafforn A, Skold CN. Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proc Natl Acad Sci U S A. 1994 Jun;91(12) 5426-5430. doi:10.1073/pnas.91.12.5426.

14. E F Ullman, H Kirakossian, A C Switchenko, J Ishkanian, M Ericson, C A Wartchow, M Pirio, J Pease, B R Irvin, S Singh, R Singh, R Patel, A Dafforn, D Davalian, C Skold, N Kurn, D B Wagner, Luminescent oxygen channeling assay (LOCI): sensitive, broadly applicable homogeneous immunoassay method, Clinical Chemistry, Volume 42, Issue 9, 1 September 1996, Pages 1518–1526, https://doi.org/10.1093/ clinchem/42.9.1518

15. Rohman, Mattias, and Jonathan Wingfield. 2016. “Chapter 3 within Drug Discovery.” New York 1439: 47–63. https://doi.org/10.1007/978-1-4939-3673-1.

16. Kimura, Hideharu, Kazuko Sakai, Tokuzo Arao, Tatsu Shimoyama, Tomohide Tamura, and Kazuto Nishio. 2007. “Antibody-Dependent Cellular Cytotoxicity of Cetuximab against Tumor Cells with Wild-Type or Mutant Epidermal Growth Factor Receptor.” Cancer Science 98 (8): 1275–80. https://doi.org/10.1111/j.1349-7006.2007.00510.x.

17. Zanese, Marion, Giovanni Tomaselli, Valérie Roullot-Lacarrière, Maïté Moreau, Luigi Bellocchio, Agnès Grel, Giovanni Marsicano, Nathalie Sans, Monique Vallée, and Jean Michel Revest. 2020. “Alpha Technology: A Powerful Tool to Detect Mouse Brain Intracellular Signaling Events.” Journal of Neuroscience Methods 332. https:// doi.org/10.1016/j.jneumeth.2019.108543.

18. Xiong Y, Wu Y, Luo S, et al. Development of a novel immunoassay to detect interactions with the transactivation domain of p53: application to screening of new drugs. Sci Rep. 2017;7(1):9185. Published 2017 Aug 23. doi:10.1038/s41598-017-09574-7

19. Bossé, R. et al. (2001) Principles of AlphaScreen. Application Note ASC-001, PerkinElmer Life Science, Inc., Montreal, Canada https://www.perkinelmer.com/lab-solutions/resources/docs/APP_AlphaScreen_Principles.pdf

20. AlphaLISA Assay Development Guide, PerkinElmer. https://iccb.med.harvard.edu/ files/iccb/files/alphalisa-assay-development-guide_onepage_rev4_oct08.pdf

21. Yu, Zeta Tak For, Huijiao Guan, Mei Ki Cheung, Walker M. McHugh, Timothy T. Cornell, Thomas P. Shanley, Katsuo Kurabayashi, and Jianping Fu. 2015. “Rapid, Automated, Parallel Quantitative Immunoassays Using Highly Integrated Microfluidics and AlphaLISA.” Scientific Reports 5 (March): 1–12. https://doi. org/10.1038/srep11339.

22. Pulido-Olmo, Helena, Elena Rodríguez-Sánchez, José Alberto Navarro-García, María G. Barderas, Gloria álvarez-Llamas, Julián Segura, Marisol Fernández-Alfonso, Luis M. Ruilope, and Gema Ruiz-Hurtado. 2017. “Rapid, Automated, and Specific Immunoassay to Directly Measure Matrix Metalloproteinase-9-Tissue Inhibitor of Metalloproteinase-1 Interactions in Human Plasma Using AlphaLISA Technology: A New Alternative to Classical ELISA.” Frontiers in Immunology 8 (JUL): 1–12. https://doi.org/10.3389/fimmu.2017.00853.

23. Spengler, Mark, Michael Adler, and Christof M. Niemeyer. 2015. “Highly Sensitive Ligand-Binding Assays in Pre-Clinical and Clinical Applications: Immuno-PCR and Other Emerging Techniques.” Analyst 140 (18): 6175–94. https://doi.org/10.1039/ c5an00822k.

24. Yeung, David, Shawn Ciotti, Shobha Purushothama, Elham Gharakhani, Geoffrey Kuesters, Brian Schlain, Chase Shen, Douglas Donaldson, and Alvydas Mikulskis. 2016. “Evaluation of Highly Sensitive Immunoassay Technologies for Quantitative Measurements of Sub-Pg/ML Levels of Cytokines in Human Serum.” Journal of Immunological Methods 437: 53–63. https://doi.org/10.1016/j.jim.2016.08.003.

25. AlphaLISA immunoassay kits: Limits of detection and range. Technical Brief. https:// www.perkinelmer.com/lab-solutions/ resources/docs/ TCH_AlphaLISA_LOD_ range.pdf

26. Peters, Christian D., Bente Jespersen, and Rikke Norregaard. 2012. “AlphaLISA versus ELISA-Based Detection of Interleukin 18 in Healthy Subjects and Patients with EndStage Renal Disease.” Scandinavian Journal of Clinical and Laboratory Investigation 72 (8): 583–92. https://doi.org/10.3109/00365513.2012.713175.

27. Leary, Beth A., Rosemary Lawrence-Henderson, Carolyn Mallozzi, Mireia Fernandez Ocaña, Nicole Duriga, Denise M. O’Hara, Mania Kavosi, Qiang Qu, and Alison P. Joyce. 2013. “Bioanalytical Platform Comparison Using a Generic Human IgG PK Assay Format.” Journal of Immunological Methods 397 (1–2): 28–36. https://doi.org/10.1016/j.jim.2013.08.009.

28. Collet-Brose, Justine, Pierre Jean Couble, Maureen R. Deehan, Robert J. Nelson, Walter G. Ferlin, and Sabrina Lory. 2016. “Evaluation of Multiple Immunoassay Technology Platforms to Select the Anti-Drug Antibody Assay Exhibiting the Most Appropriate Drug and Target Tolerance.” Journal of Immunology Research 2016. https://doi.org/10.1155/2016/5069678.

29. Immunogenicity Assessment Using the AlphaLISA technology, PerkinElmer / https://www.perkinelmer.com/lab-solutions/resources/docs/APP_ Immunogenicity _Assessment _AlphaLISA_technology.pdf

30. Development of Pharmacokinetic (PK) Assays for Detecting Biosimilars Targeting TNFα Using AlphaLISA, PerkinElmer https://www.perkinelmer.com/lab-solutions/ resources/docs/APP_AlphaLISA_Pharmacokinetic_TNFa.pdf

31. Kaendler, Kerstin, Andrew Warren, Peter Lloyd, Jennifer Sims, and Denise Sickert. 2013. “Evaluation of Dried Blood Spots for the Quantification of Therapeutic Monoclonal Antibodies and Detection of Anti-Drug Antibodies.” Bioanalysis 5 (5): 613–22. https://doi.org/10.4155/bio.13.11.

32. Cauchon, Elizabeth, Susana Liu, M. David Percival, Steve E. Rowland, Daigen Xu, Christoph Binkert, Panja Strickner, and Jean Pierre Falgueyret. 2009. “Development of a Homogeneous Immunoassay for the Detection of Angiotensin I in Plasma Using AlphaLISA Acceptor Beads Technology.” Analytical Biochemistry 388 (1): 134–39. https://doi.org/10.1016/j.ab.2009.02.031.

33. Dehdashti SJ, Zheng W, Gever JR, et al. A high-throughput screening assay for determining cellular levels of total tau protein. Curr Alzheimer Res. 2013;10(7):679–687. doi:10.2174/15672050113109990143

34. Chau DM, Shum D, Radu C, et al. A novel high throughput 1536-well Notch1 γ -secretase AlphaLISA assay. Comb Chem High Throughput Screen. 2013;16(6):415–424. doi:10.2174/1386207311316060001

35. Wang, Hongjie, Adel Nefzi, Gregg B. Fields, Madepalli K. Lakshmana, and Dmitriy Minond. 2014. “AlphaLISA-Based High-Throughput Screening Assay to Measure Levels of Soluble Amyloid Precursor Protein α.” Analytical Biochemistry 459: 24–30. https://doi.org/10.1016/j.ab.2014.05.007.

36. Zhang, Xi, Goce Dimeski, and Chamindie Punyadeera. 2014. “Validation of an Immunoassay to Measure Plasminogen-Activator Inhibitor-1 Concentrations in Human Saliva.” Biochemia Medica 24 (2): 258–65. https://doi.org/10.11613/BM.2014.028.

37. Zhao, Hui, Guanfeng Lin, Tiancai Liu, Junyu Liang, Zhiqi Ren, Rongliang Liang, Baihong Chen, Wenhua Huang, and Yingsong Wu. 2016. “Rapid Quantitation of Human Epididymis Protein 4 in Human Serum by Amplified Luminescent Proximity Homogeneous Immunoassay (AlphaLISA).” Journal of Immunological Methods 437: 64–69. https://doi.org/10.1016/j.jim.2016.08.006.

38. Zhao, Hongli, Jue Zhao, Jiapeng Hou, Siqing Wang, Yu Ding, Boxun Lu, and Jian Wang. 2017. “AlphaLISA Detection of Alpha-Synuclein in the Cerebrospinal Fluid and Its Potential Application in Parkinson’s Disease Diagnosis.” Protein and Cell 8 (9): 696–700. https://doi.org/10.1007/s13238-017-0424-4.

39. Baldo B, Sajjad MU, Cheong RY, et al. Quantification of Total and Mutant Huntingtin Protein Levels in Biospecimens Using a Novel alphaLISA Assay. eNeuro. 2018;5(4):ENEURO.0234-18.2018. Published 2018 Oct 10. doi:10.1523/ ENEURO.0234-18.2018

40. Yan L, Dong X, Gao J, et al. A novel rapid quantitative method reveals stathmin-1 as a promising marker for esophageal squamous cell carcinoma. Cancer Med. 2018;7(5):1802–1813. doi:10.1002/cam4.1449

41. Wen, Chu Ling, Kuan Yu Chen, Chih Ta Chen, Jiing Guang Chuang, Pan Chyr Yang, and Lu Ping Chow. 2012. “Development of an AlphaLISA Assay to Quantify Serum Core-Fucosylated E-Cadherin as a Metastatic Lung Adenocarcinoma Biomarker.” Journal of Proteomics 75 (13): 3963–76. https://doi.org/10.1016/j.jprot.2012.05.015.

42. Huang B, Yu H, Bao J, Zhang M, Green WL, Wu SY. A Homogeneous TimeResolved Fluorescence Immunoassay Method for the Measurement of Compound W. Biomark Insights. 2018;13:1177271918757484. Published 2018 Feb 6. doi:10.1177/1177271918757484

43. He, An, Tian Cai Liu, Zhi Ning Dong, Zhi Qi Ren, Jing Yuan Hou, Ming Li, and Ying Song Wu. 2013. “A Novel Immunoassay for the Quantization of CYFRA 21-1 in Human Serum.” Journal of Clinical Laboratory Analysis 27 (4): 277–83. https://doi.org/10.1002/jcla.21597.

44. Zou, Li Ping, Tian Cai Liu, Guan Feng Lin, Zhi Ning Dong, Jing Yuan Hou, Ming Li, and Ying Song Wu. 2013. “Alphalisa for the Determination of Median Levels of the Free β Subunit of Human Chorionic Gonadotropin in the Serum of Pregnant Women.” Journal of Immunoassay and Immunochemistry 34 (2): 134–48. https://doi. org/10.1080/15321819.2012.690358.

45. Wu, Fei, Lin Wang, Qiaomei Guo, Mingna Zhao, Hongchen Gu, Hong Xu, and Jiatao Lou. 2015. “A Homogeneous Immunoassay Method for Detecting InterferonGamma in Patients with Latent Tuberculosis Infection.” Journal of Microbiology and Biotechnology 26 (3): 588–95. https://doi.org/10.4014/jmb.1507.07102.

46. Du, Guifang, Xiaomei Yang, Mu Hu, Chengcheng Hao, Yanan Gu, Xiuyi Zhi, Wen G. Jiang, Junqi He, and Shan Cheng. 2015. “Designing a Novel High-Throughput AlphaLISA Assay to Quantify Plasma NHERF1 as a Non-Small Cell Lung Cancer Biomarker.” RSC Advances 5 (102): 84164–71. https://doi.org/10.1039/c5ra16502d.

47. Li P, Chen Z, Liu B, et al. Establishment of a novel homogeneous nanoparticle-based assay for sensitive procalcitonin detection of ultra low-volume serum samples. Int J Nanomedicine. 2018;13:5395–5404. Published 2018 Sep 13. doi:10.2147/IJN.S173776

48. Muñoz-Prieto, A., S. Martínez-Subiela, J. J. Cerón, and A. Tvarijonaviciute. 2019. “A New Highly Sensitive Immunoassay for the Detection of Adiponectin in Serum and Saliva of Dogs and Its Application in Obesity and Canine Leishmaniosis.” Research in Veterinary Science 125 (July): 374–81. https://doi.org/10.1016/j.rvsc.2019.07.019.

49. Mechaly, Adva, Noam Cohen, Shay Weiss, and Eran Zahavy. 2013. “A Novel Homogeneous Immunoassay for Anthrax Detection Based on the AlphaLISA Method: Detection of B. Anthracis Spores and Protective Antigen (PA) in Complex Samples.” Analytical and Bioanalytical Chemistry 405 (12): 3965–72. https://doi.org/10.1007/ s00216-013-6752-1.

50. Armstrong, Cheryl M., Leah E. Ruth, Joseph A. Capobianco, Terence P. Strobaugh, Fernando M. Rubio, and Andrew G. Gehring. 2018. “Detection of Shiga Toxin 2 Produced by Escherichia Coli in Foods Using a Novel AlphaLISA.” Toxins 10 (11): 1–14. https://doi.org/10.3390/toxins10110422.

51. Zhao, Junqing, Qingyu Lv, Peng Liu, Liyuan Guo, Liwen Zhang, Yuling Zheng, Lihua Ming, Decong Kong, Hua Jiang, and Yongqiang Jiang. 2019. “AlphaLISA for Detection of Staphylococcal Enterotoxin B Free from Interference by Protein A.” Toxicon 165 (November 2018): 62–68. https://doi.org/10.1016/j.toxicon.2019.04.016.

52. Wang, Hai-Bo, Tian Du, Wei-Gang Li, Jun-Hua Zhao, Ze Yang, and Qiu-Hua Mo. 2020. “The Establishment and Clinical Evaluation of a Novel, Rapid, No-Wash OneStep Immunoassay for the Detection of Dengue Virus Non-Structural Protein 1.” Journal of Virological Methods 276 (June 2019): 113793. https://doi.org/10.1016/j. jviromet.2019.113793.

53. Liu, Tian Cai, He Huang, Zhi Ning Dong, An He, Ming Li, Ying Song Wu, and Wei Wen Xu. 2013. “Development of an Amplified Luminescent Proximity Homogeneous Assay for Quantitative Determination of Hepatitis B Surface Antigen in Human Serum.” Clinica Chimica Acta 426: 139–44. https://doi.org/10.1016/j.cca.2013.09.013.

54. Kimpston-Burkgren, Kay, Juan Carlos Mora-Díaz, Philippe Roby, Jordan BjustromKraft, Rodger Main, Roger Bosse, and Luis Gabriel Giménez-Lirola. 2020. “Characterization of the Humoral Immune Response to Porcine Epidemic Diarrhea Virus Infection under Experimental and Field Conditions Using an AlphaLISA Platform.” Pathogens 2020, Vol. 9, Page 233 9 (3): 233. https://doi.org/10.3390/ PATHOGENS9030233.

55. Muneoka, Satoshi, Ryuichi Nakamura, Masato Hoshino, Kimiaki Utsugisawa, and Tomohiro Makino. 2018. “Development of a Novel Immunoassay to Select Antibodies against Intact Membrane Antigens by Using the Homogeneous AlphaLISA System.” Journal of Bioscience and Bioengineering 126 (4): 522–26. https://doi.org/10.1016/j. jbiosc.2018.04.018.

56. Wu, Qiang, Ho Young Lee, Pin Yee Wong, Guoying Jiang, and Hélène GazzanoSantoro. 2015. “Development and Applications of AlphaScreen-Based FcRn Binding Assay to Characterize Monoclonal Antibodies.” Journal of Immunological Methods. https://doi.org/10.1016/j.jim.2015.03.012.

Доклинические и клинические исследования (ДКИ и КИ) являются необходимой частью процесса регистрации лекарственных препаратов. Исследования токсикокинетики в ДКИ и фармакокинетики во всех фазах КИ требуют надежных методов измерения концентрации действующего вещества в сложных матрицах (плазма и сыворотка крови, другие биологические жидкости). Нормативные документы устанавливают подробные и достаточно строгие требования к биоаналитическим методикам [1–7], поэтому не каждый метод, успешно использующийся в научных целях, может быть надлежащим образом валидирован и использован в исследованиях, проводимых в соответствии со стандартами GLP и GCLP. В частности, стандарты индустрии более строго трактуют понятие «чувствительность» (sensitivity) метода, определяя его как нижний предел количественного определения (НПКО), — количество аналита, которое может быть измерено с достаточной правильностью и прецизионностью, а не как предел обнаружения — количество аналита, сигнал от которого можно надежно отличить от фона [1, 2].

Для определения низкомолекулярных соединений в биологических образцах чаще всего используются методы высокоэффективной жидкостной хроматографии (ВЭЖХ) и ВЭЖХ-масс-спектрометрии. В случае же если действующее вещество является биологическим препаратом (чаще всего белковой природы), обычно используются методы связывания лиганда (ligand binding assays), в первую очередь иммуноферментный анализ (ИФА) [8]. Альтернативами ИФА для определения концентрации макромолекул служат радиоиммунный анализ (RIA), иммунофлуоресцентый анализ (IFA), поверхностный плазмонный резонанс, биослойная интерферометрия, жидкостная хроматография с тандемной масс-спектрометрией и ряд других методов [8–10].

Одной из интересных альтернатив ИФА для биоаналитических исследований является хемилюминесцентный метод связывания лиганда AlphaLISA [11], отличающийся большей производительностью и чувствительностью.

AlphaScreen и AlphaLISA [11, 12] — методы связывания лиганда, в отличие от ИФА не требующие стадии отмывки (гомогенные), более быстрые и менее трудозатратные. В основе Alpha (Amplified Luminescent Proximity Homogeneous Assay) технологий лежит оригинальный хемилюминесцентный метод генерации сигнала за счет передачи энергии между двумя частицами («бидсами») из полистирола размером 250–350 нм (рис. 1). Антитела (или другие лиганд-связывающие агенты) иммобилизуются на частицы двух типов — донорные и акцепторные. Донорные частицы содержат фталоцианин и при возбуждении светом с длиной волны 680 нм выделяют синглетный кислород, который существует в этой форме около 4 миллисекунд и распространяется на небольшое (около 200 нм) расстояние. Если в растворе присутствует аналит, за счет его взаимодействия с антителами на донорных и акцепторных частицах образуется «сэндвич», «бидсы» сближаются, и синглетный кислород достигает акцепторной частицы. Акцепторные частицы AlphaScreen содержат три красителя — тиоксен, антрацен и рубрен. Тиоксен реагирует с синглетным кислородом, испуская энергию, которая затем передается по каскаду через антрацен к рубрену. Излучение рубрена (520–620 нм) фиксируется фотометром. В методе AlphaLISA акцепторные частицы содержат европий вместо антрацена и рубрена и излучают более узкий и интенсивный спектр с максимумом в 615 нм. Метод оптимизирован для использования в сложных биологических смесях, сдвиг спектра и его сужение необходимо, чтобы снизить влияние гемоглобина и других окрашенных веществ крови.

Для Цитирования:
Станислав Андреевич Черепушкин, Использование метода AlphaLISA в биоаналитических исследованиях. Новейшие зарубежные и отечественные лекарственные препараты: фармакотерапия, фармакодинамика, фармакокинетика. 2020;2.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: