По всем вопросам звоните:

+7 495 274-22-22

УДК: 616.8 DOI:10.33920/med-01-2311-11

Фотодинамическая терапия злокачественных опухолей головного мозга (литературный обзор)

Шахманаева Айна Умар-Халипаевна ассистент кафедры нейрохирургии и нейрореанимации, врач-нейрохирург, лаборант, Лаборатория инвазивных нейроинтерфейсов, Научно-исследовательский институт «Технобиомед», Научно-образовательный институт «Высшая школа клинической медицины им. Н.А. Семашко», Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации, ул. Делегатская, д. 20, с. 1, Москва, 127473, ORCID: https://orcid.org/0009-0001-0258-8181, ayna4neuro@gmail.com
Козликина Елизавета Игоревна младший научный сотрудник, Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации, ул. Делегатская, д. 20, с. 1, Москва, 127473, ORCID: https://orcid.org/0000-0002-4080-4041
Трифонов Игорь Сергеевич кандидат медицинских наук, доцент кафедры нейрохирургии и нейрореанимации, врач-нейрохирург, Научно-образовательный институт «Высшая школа клинической медицины им. Н.А. Семашко», Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации, ул. Делегатская, д. 20, с. 1, Москва, 127473, ORCID: https://orcid.org/0000-0002-6911-0975
Левченко Олег Валерьевич доктор медицинских наук, профессор РАН, заведующий кафедрой нейрохирургии и нейрореанимации, проректор, Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации, ул. Делегатская, д. 20, с. 1, Москва, 127473, ORCID: 0000-0003-0857-9398

Первичные злокачественные новообразования головного мозга входят в 17 наиболее распространенных типов опухолей во всем мире, и порядка 77 % из них являются глиальными опухолями. Комплексный подход к лечению данных патологий, включающий тотальную резекцию опухолевой ткани и послеоперационную химио- и лучевую терапии, направлен на максимально возможное продление жизни больного. Однако даже при использовании «золотого стандарта» в лечении средняя продолжительность жизни больных с глиобластомой составляет 14,6 мес., а больных с диффузной астроцитомой — 50,5 мес. Применение селективных методов воздействия на опухолевые клетки, в том числе фотодинамической терапии, является актуальным направлением в нейроонкологии. Несколько контролируемых исследований продемонстрировали статистически значимое влияние фотодинамической терапии на увеличение продолжительности жизни пациентов с глиомами высокой степени злокачественности по сравнению с традиционным лечением. Данный обзор посвящен анализу эффективности фотодинамической терапии и флуоресцентно-навигированной резекции в лечении глиальных опухолей высокой степени злокачественности для дальнейшего поиска способов их совершенствования с целью повышения радикальности удаления опухоли, увеличения продолжительности и качества жизни пациентов.

Литература:

1. Stylli S.S. et al. Photodynamic therapy of high grade glioma — long term survival //Journal of clinical neuroscience. — 2005. — Т. 12. — №. 4. — С. 389–398.

2. Sanai N. et al. An extent of resection threshold for newly diagnosed glioblastomas //Journal of neurosurgery. — 2011. — Т. 115. — №. 1. — С. 3–8.

3. Hu L. et al. Up-regulation of long non-coding RNA AB073614 predicts a poor prognosis in patients with glioma //International Journal of Environmental Research and Public Health. — 2016. — Т. 13. — №. 4. — С. 433.

4. Stummer W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial //The lancet oncology. — 2006. — Т. 7. — №. 5. — С. 392–401.

5. Stupp R., Roila F. Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up //Annals of Oncology. — 2009. — Т. 20. — С. iv126-iv128.

6. Buckner J.C. et al. Phase III trial of carmustine and cisplatin compared with carmustine alone and standard radiation therapy or accelerated radiation therapy in patients with glioblastoma multiforme: North Central Cancer Treatment Group 93-72-52 and Southwest Oncology Group 9503 Trials // Journal of clinical oncology. — 2006. — Т. 24. — №. 24. — С. 3871–3879.

7. Mikkelsen T. Cytostatic agents in the management of malignant gliomas //Cancer Control. — 1998. — Т. 5. — №. 2. — С. 150–162.

8. Fenstermaker R.A., Ciesielski M.J. Immunotherapeutic strategies for malignant glioma //Cancer control. — 2004. — Т. 11. — №. 3. — С. 181–191.

9. Кубасова И.Ю. и др. Флюоресцентная диагностика и фотодинамическая терапия злокачественных глиом у крыс //Российский онкологический журнал. — 2013. — №. 2. — С. 14–18.

10. Shibui S. Present status and future prospects of multi-disciplinary therapy for malignant gliomas //Gan to Kagaku ryoho. Cancer & Chemotherapy. — 2013. — Т. 40. — №. 10. — С. 1274–1277.

11. Minniti G. et al. IDH1 mutation and MGMT methylation status predict survival in patients with anaplastic astrocytoma treated with temozolomide-based chemoradiotherapy //Journal of neuro-oncology. — 2014. — Т. 118. — С. 377–383.

12. Stupp R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma //New England journal of medicine. — 2005. — Т. 352. — №. 10. — С. 987–996.

13. Bernstein M., Bampoe J. Low-grade gliomas //Neurooncology. The Essentials. — 2000. — Т. 30. — С. 302–8.

14. Ries L.A. G. et al. SEER cancer statistics review, 1975–2005 //Bethesda, MD: National Cancer Institute. — 2008. — Т. 2999.

15. Bernstein M., Bampoe J. Low-grade gliomas //Neurooncology. The Essentials. — 2000. — Т. 30. — С. 302–8.

16. Akimoto J. Photodynamic therapy for malignant brain tumors //Neurologia medico-chirurgica. — 2016. — Т. 56. — №. 4. — С. 151–157.

17. Osman H. et al. Acridine orange as a novel photosensitizer for photodynamic therapy in glioblastoma //World neurosurgery. — 2018. — Т. 114. — С. e1310-e1315.

18. Zinn P.O. et al. A coclinical radiogenomic validation study: conserved magnetic resonance radiomic appearance of periostin-expressing glioblastoma in patients and xenograft models //Clinical cancer research. — 2018. — Т. 24. — №. 24. — С. 6288–6299.

19. Tappeiner H.V. Therapeutische versuche mit fluoreszierrenden stoffe //Muench. Med. Wochenschr. — 1903. — Т. 47. — С. 2042–2044.

20. Lipson R.L., Baldes E.J., Olsen A.M. The use of a derivative of hematoporphyrin in tumor detection //Journal of the National Cancer Institute. — 1961. — Т. 26. — №. 1. — С. 1–11.

21. Dougherty T.J. et al. Photodynamic therapy //Journal of National Cancer Institute. — 1998. — Т. 90. — №. 12. — С. 889–905.

22. Diamond I. et al. Photodynamic therapy of malignant tumours //The Lancet. — 1972. — Т. 300. — №. 7788. — С. 1175–1177.

23. Perria C. et al. Fast attempts at the photodynamic treatment of human gliomas //Journal of neurosurgical sciences. — 1980. — Т. 24. — №. 3–4. — С. 119–129.

24. Суфианов А.А. и др. Применение фотодинамической терапии в лечении злокачественных новообразований центральной нервной системы //Вестник Авиценны. — 2020. — Т. 22. — №. 3. — С. 489–495.

25. Yanovsky R.L. et al. Photodynamic therapy for solid tumors: A review of the literature //Photodermatology, photoimmunology & photomedicine. — 2019. — Т. 35. — №. 5. — С. 295–303.

26. Mahmoudi K. et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas //Journal of neuro-oncology. — 2019. — Т. 141. — С. 595–607.

27. Casas A. et al. Mechanisms of resistance to photodynamic therapy //Current medicinal chemistry. — 2011. — Т. 18. — №. 16. — С. 2486–2515.

28. Bechet D. et al. Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies //Cancer treatment reviews. — 2014. — Т. 40. — №. 2. — С. 229–241.

29. Seshadri M. et al. Light delivery over extended time periods enhances the effectiveness of photodynamic therapy //Clinical Cancer Research. — 2008. — Т. 14. — №. 9. — С. 2796–2805.

30. Angell-Petersen E. et al. Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model //Journal of neurosurgery. — 2006. — Т. 104. — №. 1. — С. 109–117.

31. Cramer S.W., Chen C.C. Photodynamic therapy for the treatment of glioblastoma //Frontiers in surgery. — 2020. — Т. 6. — С. 81.

32. Awasthi K. et al. Fluorescence characteristics and lifetime images of photosensitizers of talaporfin sodium and sodium pheophorbide a in normal and cancer cells //Sensors. — 2015. — Т. 15. — №. 5. — С. 11417–11430.

33. Shimizu K. et al. Intraoperative photodynamic diagnosis using talaporfin sodium simultaneously applied for photodynamic therapy against malignant glioma: A prospective clinical study //Frontiers in Neurology. — 2018. — Т. 9. — С. 24.

34. Chen B. et al. Gross total resection of glioma with the intraoperative fluorescence-guidance of fluorescein sodium //International Journal of Medical Sciences. — 2012. — Т. 9. — №. 8. — С. 708.

35. Kessel D. Apoptosis, paraptosis and autophagy: death and survival pathways associated with photodynamic therapy //Photochemistry and photobiology. — 2019. — Т. 95. — №. 1. — С. 119–125.

36. Cengel K.A., Simone C.B., Busch T.M. Vascular effects of photodynamic therapy for tumors //HANDBOOK OF PHOTODYNAMIC THERAPY: Updates on Recent Applications of Porphyrin-Based Compounds. — 2016. — С. 335–364.

37. Chen B. et al. Vascular and cellular targeting for photodynamic therapy //Critical Reviews™ in Eukaryotic Gene Expression. — 2006. — Т. 16. — №. 4.

38. Meyers J.D. et al. Peptide‐targeted gold nanoparticles for photodynamic therapy of brain cancer //Particle & Particle Systems Characterization. — 2015. — Т. 32. — №. 4. — С. 448–457.

39. Yi W. et al. Photodynamic therapy mediated by 5-aminolevulinic acid suppresses gliomas growth by decreasing the microvessels //Journal of Huazhong University of Science and Technology [Medical Sciences]. — 2015. — Т. 35. — №. 2. — С. 259–264.

40. Gollnick S.O. Photodynamic therapy and antitumor immunity //Journal of the National Comprehensive Cancer Network. — 2012. — Т. 10. — №. Suppl_2. — С. S-40-S-43.

41. Bellnier D.A. et al. Clinical pharmacokinetics of the PDT photosensitizers porfimer sodium (Photofrin), 2‐ [1‐hexyloxyethyl] ‐2‐devinyl pyropheophorbide‐a (Photochlor) and 5‐ALA‐induced protoporphyrin IX //Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. — 2006. — Т. 38. — №. 5. — С. 439–444.

42. Рында А.Ю. Фотодиагностика и фотодинамическая терапия глиом полушарий большого мозга: автореф. диссертации на соискание учёной степени кандидата медицинских наук: 14.01.18/ Рында А.Ю. — Санкт-Петербург, 2019. — 225 с.

43. Gerweck L.E. The pH difference between tumor and normal tissue offers a tumor specific target for the treatment of cancer //Drug Resistance Updates. — 2000. — Т. 1. — №. 3. — С. 49–50.

44. Moan J. et al. Tumour selectivity of photodynamic therapy //Targeted Cancer Therapies. An Odyssey. — 2003. — С. 208–211.

45. Ormond A.B., Freeman H.S. Dye sensitizers for photodynamic therapy //Materials. — 2013. — Т. 6. — №. 3. — С. 817–840.

46. Zhang J. et al. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy //Acta pharmaceutica sinica B. — 2018. — Т. 8. — №. 2. — С. 137–146.

47. Johansson A. et al. Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis //Lasers in surgery and medicine. — 2013. — Т. 45. — №. 4. — С. 225–234.

48. Gaspar L.E. et al. Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment //International Journal of Radiation Oncology* Biology* Physics. — 1992. — Т. 24. — №. 1. — С. 55–57.

49. Korbelik M. et al. Distribution of Photofrin between tumour cells and tumour associated macrophages //British journal of cancer. — 1991. — Т. 64. — №. 3. — С. 508–512.

50. Ahn P.H. et al. Lesion oxygenation associates with clinical outcomes in premalignant and early stage head and neck tumors treated on a phase 1 trial of photodynamic therapy //Photodiagnosis and photodynamic therapy. — 2018. — Т. 21. — С. 28–35.

51. Hadjipanayis C.G., Widhalm G., Stummer W. What is the surgical benefit of utilizing 5-ALA for fluorescence-guided surgery of malignant gliomas? //Neurosurgery. — 2015. — Т. 77. — №. 5. — С. 663.

52. Nanashima A., Nagayasu T. Current status of photodynamic therapy in digestive tract carcinoma in Japan //International journal of molecular sciences. — 2015. — Т. 16. — №. 2. — С. 3434–3440.

53. Romanko Y.S. et al. Relationship between antitumor efficiency of photodynamic therapy with photoditasine and photoenergy density //Bulletin of Experimental Biology and Medicine. — 2005. — Т. 139. — С. 460–464.

54. Cramer S.W., Chen C.C. Photodynamic therapy for the treatment of glioblastoma //Frontiers in surgery. — 2020. — Т. 6. — С. 81.

55. Muragaki Y. et al. Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors //Journal of neurosurgery. — 2013. — Т. 119. — №. 4. — С. 845–852.

56. Гельфонд М.Л. и др. Возможности фотодинамической терапии (ФДТ) в онкологической практике //Российский биотерапевтический журнал. — 2003. — Т. 2. — №. 4. — С. 67–71.

57. Eljamel M.S., Goodman C., Moseley H. ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial //Lasers in medical science. — 2008. — Т. 23. — №. 4. — С. 361–367.

58. Eyüpoglu I.Y. et al. Intraoperative vascular DIVA surgery reveals angiogenic hotspots in tumor zones of malignant gliomas //Scientific reports. — 2015. — Т. 5. — №. 1. — С. 7958.

59. Lamberti M.J. et al. Photodynamic modulation of type 1 interferon pathway on melanoma cells promotes dendritic cell activation //Frontiers in immunology. — 2019. — Т. 10. — С. 2614.

60. Kaneko S. et al. Photodynamic therapy of malignant gliomas //Intracranial Gliomas Part III–Innovative Treatment Modalities. — 2018. — Т. 32. — С. 1–13.

61. Ritz R. et al. Hypericin: a promising fluorescence marker for differentiating between glioblastoma and neurons in vitro //International journal of oncology. — 2005. — Т. 27. — №. 6. — С. 1543–1549.

62. Noell S. et al. Selective enrichment of hypericin in malignant glioma: pioneering in vivo results //International journal of oncology. — 2011. — Т. 38. — №. 5. — С. 1343–1348.

63. Ontario Health (Quality). 5-Aminolevulinic Acid Hydrochloride (5-ALA) — Guided Surgical Resection of High-Grade Gliomas: A Health Technology Assessment // Ont Health Technol Assess Ser. — 2020. — T. 20 — № 9. — C. 1–92.

64. Zhao S. et al. Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid — induced porphyrins: A systematic review and meta-analysis of prospective studies //PloS one. — 2013. — Т. 8. — №. 5. — С. e63682.

65. Hadjipanayis C.G., Stummer W. 5-ALA and FDA approval for glioma surgery //Journal of neuro-oncology. — 2019. — Т. 141. — С. 479–486.

66. Sun R., Cuthbert H., Watts C. Fluorescence-guided surgery in the surgical treatment of gliomas: Past, present and future //Cancers. — 2021. — Т. 13. — №. 14. — С. 3508.

67. Valdes P.A. et al. 5-aminolevulinic acid induced protoporphyrin IX (ALA-PpIX) fluorescence guidance in meningioma surgery //Journal of Neuro-oncology. — 2019. — Т. 141. — С. 555–565.

68. Ferraro N. et al. The role of 5-aminolevulinic acid in brain tumor surgery: a systematic review //Neurosurgical review. — 2016. — Т. 39. — С. 545–555.

69. Yang J. et al. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology //Theranostics. — 2020. — Т. 10. — №. 7. — С. 3223.

70. Ren Z. et al. A systematic review and meta-analysis of fluorescent-guided resection and therapy-based photodynamics on the survival of patients with glioma //Lasers in Medical Science. — 2021. — С. 1–9.

71. Plaetzer K. et al. Photophysics and photochemistry of photodynamic therapy: fundamental aspects //Lasers in medical science. — 2009. — Т. 24. — С. 259–268.

72. Dupont C. et al. INtraoperative photoDYnamic Therapy for GliOblastomas (INDYGO): study protocol for a phase I clinical trial //Neurosurgery. — 2019. — Т. 84. — №. 6. — С. E414-E419.

73. Kustov D.M. et al. Laser-induced fluorescent visualization and photodynamic therapy in surgical treatment of glial brain tumors //Biomedical Optics Express. — 2021. — Т. 12. — №. 3. — С. 1761–1773.

74. Stylli S.S. et al. Photodynamic therapy of brain tumours: evaluation of porphyrin uptake versus clinical outcome //Journal of Clinical Neuroscience. — 2004. — Т. 11. — №. 6. — С. 584–596.

75. Kostron H., Fiegele T., Akatuna E. Combination of FOSCAN® mediated fluorescence guided resection and photodynamic treatment as new therapeutic concept for malignant brain tumors //Medical Laser Application. — 2006. — Т. 21. — №. 4. — С. 285–290.

76. Akimoto J., Haraoka J., Aizawa K. Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas //Photodiagnosis and photodynamic therapy. — 2012. — Т. 9. — №. 2. — С. 91–99.

77. Muller P.J., Wilson B.C. Photodynamic therapy of brain tumors — a work in progress //Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. — 2006. — Т. 38. — №. 5. — С. 384–389.

78. Stummer W. et al. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report //Journal of neuro-oncology. — 2008. — Т. 87. — С. 103–109.

79. Beck T.J. et al. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5‐aminolevulinic acid induced protoporphyrin IX //Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. — 2007. — Т. 39. — №. 5. — С. 386–393.

80. Eljamel S. Photodynamic applications in brain tumors: a comprehensive review of the literature //Photodiagnosis and photodynamic therapy. — 2010. — Т. 7. — №. 2. — С. 76–85.

81. Kennedy J.C., Pottier R.H., Pross D.C. Photodynamic therapy with endogenous protoporphyrin: IX: basic principles and present clinical experience //Journal of Photochemistry and Photobiology B: Biology. — 1990. — Т. 6. — №. 1–2. — С. 143–148.

82. Muller P., Wilson B. A randomized two arm clinical trial of photofrin pdt and standard therapy in high grade gliomas. phase iii trial //Proceedings of the 6th International PDT Symposium 2006. — 2006.

83. Kozlikina E.I. et al. The Combined Use of 5-ALA and Chlorin E6 Photosensitizers for Fluorescence-Guided Resection and Photodynamic Therapy under Neurophysiological Control for Recurrent Glioblastoma in the Functional Motor Area after Ineffective Use of 5-ALA: Preliminary Results //Bioengineering. — 2022. — Т. 9. — №. 3. — С. 104.

84. Lisyany N.I. The modern technologies of conservative treatment of gliomas //Cerebral gliomas. Under red YA Zozulya. Kyiv: Ltd.»Express-Polygraph. — 2007. — С. 383–569.

85. Zavadskaya Т.S. Photodynamic therapy in the treatment of glioma //Experimental oncology. — 2015. — №. 37,№ 4. — С. 234–241.

1. Stylli S.S. et al. Photodynamic therapy of high grade glioma — long term survival //Journal of clinical neuroscience. — 2005. — Vol. 12. — №. 4. — P. 389–398.

2. Sanai N. et al. An extent of resection threshold for newly diagnosed glioblastomas //Journal of neurosurgery. — 2011. — Vol. 115. — №. 1. — P. 3–8.

3. Hu L. et al. Up-regulation of long non-coding RNA AB073614 predicts a poor prognosis in patients with glioma //International Journal of Environmental Research and Public Health. — 2016. — Vol. 13. — №. 4. — P. 433.

4. Stummer W. et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial //The lancet oncology. — 2006. — Vol. 7. — №. 5. — P. 392–401.

5. Stupp R., Roila F. Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up //Annals of Oncology. — 2009. — Vol. 20. — P. iv126-iv128.

6. Buckner J.C. et al. Phase III trial of carmustine and cisplatin compared with carmustine alone and standard radiation therapy or accelerated radiation therapy in patients with glioblastoma multiforme: North Central Cancer Treatment Group 93-72-52 and Southwest Oncology Group 9503 Trials // Journal of clinical oncology. — 2006. — Vol. 24. — №. 24. — P. 3871–3879.

7. Mikkelsen T. Cytostatic agents in the management of malignant gliomas //Cancer Control. — 1998. — Vol. 5. — №. 2. — P. 150–162.

8. Fenstermaker R.A., Ciesielski M.J. Immunotherapeutic strategies for malignant glioma //Cancer control. — 2004. — Vol. 11. — №. 3. — P. 181–191.

9. Kubasova I.Iu. et al. Fliuorestsentnaia diagnostika i fotodinamicheskaia terapiia zlokachestvennykh gliom u krys [Fluorescent diagnostics and photodynamic therapy of malignant gliomas in rats] // Rossiiskii onkologicheskii zhurnal [Russian Journal of Oncology]. — 2013. — No. 2. — P. 14–18. (In Russ.)

10. Shibui S. Present status and future prospects of multi-disciplinary therapy for malignant gliomas //Gan to Kagaku ryoho. Cancer & Chemotherapy. — 2013. — Vol. 40. — №. 10. — P. 1274–1277.

11. Minniti G. et al. IDH1 mutation and MGMT methylation status predict survival in patients with anaplastic astrocytoma treated with temozolomide-based chemoradiotherapy //Journal of neuro-oncology. — 2014. — Vol. 118. — P. 377–383.

12. Stupp R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma //New England journal of medicine. — 2005. — Vol. 352. — №. 10. — P. 987–996.

13. Bernstein M., Bampoe J. Low-grade gliomas //Neurooncology. The Essentials. — 2000. — Vol. 30. — P. 302–8.

14. Ries L.A. G. et al. SEER cancer statistics review, 1975–2005 //Bethesda, MD: National Cancer Institute. — 2008. — Vol. 2999.

15. Bernstein M., Bampoe J. Low-grade gliomas //Neurooncology. The Essentials. — 2000. — Vol. 30. — P. 302–8.

16. Akimoto J. Photodynamic therapy for malignant brain tumors //Neurologia medico-chirurgica. — 2016. — Vol. 56. — №. 4. — P. 151–157.

17. Osman H. et al. Acridine orange as a novel photosensitizer for photodynamic therapy in glioblastoma //World neurosurgery. — 2018. — Vol. 114. — P. e1310-e1315.

18. Zinn P.O. et al. A coclinical radiogenomic validation study: conserved magnetic resonance radiomic appearance of periostin-expressing glioblastoma in patients and xenograft models //Clinical cancer research. — 2018. — Vol. 24. — №. 24. — P. 6288–6299.

19. Tappeiner H.V. Therapeutische versuche mit fluoreszierrenden stoffe //Muench. Med. Wochenschr. — 1903. — Vol. 47. — P. 2042–2044.

20. Lipson R.L., Baldes E.J., Olsen A.M. The use of a derivative of hematoporphyrin in tumor detection //Journal of the National Cancer Institute. — 1961. — Vol. 26. — №. 1. — P. 1–11.

21. Dougherty T.J. et al. Photodynamic therapy //Journal of National Cancer Institute. — 1998. — Т. 90. — №. 12. — P. 889–905.

22. Diamond I. et al. Photodynamic therapy of malignant tumours //The Lancet. — 1972. — Vol. 300. — №. 7788. — P. 1175–1177.

23. Perria C. et al. Fast attempts at the photodynamic treatment of human gliomas //Journal of neurosurgical sciences. — 1980. — Vol. 24. — №. 3–4. — P. 119–129.

24. Sufianov A.A. et al. Primenenie fotodinamicheskoi terapii v lechenii zlokachestvennykh novoobrazovanii tsentralnoi nervnoi sistemy [Application of photodynamic therapy in the treatment of malignant neoplasms of the central nervous system] // Vestnik Avitsenny [Avicenna Bulletin]. — 2020. — Vol. 22. — No. 3. — P. 489–495. (In Russ.)

25. Yanovsky R.L. et al. Photodynamic therapy for solid tumors: A review of the literature //Photodermatology, photoimmunology & photomedicine. — 2019. — Vol. 35. — №. 5. — P. 295–303.

26. Mahmoudi K. et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas //Journal of neuro-oncology. — 2019. — Vol. 141. — P. 595–607.

27. Casas A. et al. Mechanisms of resistance to photodynamic therapy //Current medicinal chemistry. — 2011. — Vol. 18. — №. 16. — P. 2486–2515.

28. Bechet D. et al. Photodynamic therapy of malignant brain tumours: A complementary approach to conventional therapies //Cancer treatment reviews. — 2014. — Vol. 40. — №. 2. — P. 229–241.

29. Seshadri M. et al. Light delivery over extended time periods enhances the effectiveness of photodynamic therapy //Clinical Cancer Research. — 2008. — Vol. 14. — №. 9. — P. 2796–2805.

30. Angell-Petersen E. et al. Influence of light fluence rate on the effects of photodynamic therapy in an orthotopic rat glioma model //Journal of neurosurgery. — 2006. — Vol. 104. — №. 1. — P. 109–117.

31. Cramer S.W., Chen C.C. Photodynamic therapy for the treatment of glioblastoma //Frontiers in surgery. — 2020. — Vol. 6. — P. 81.

32. Awasthi K. et al. Fluorescence characteristics and lifetime images of photosensitizers of talaporfin sodium and sodium pheophorbide a in normal and cancer cells //Sensors. — 2015. — Vol. 15. — №. 5. — P. 11417–11430.

33. Shimizu K. et al. Intraoperative photodynamic diagnosis using talaporfin sodium simultaneously applied for photodynamic therapy against malignant glioma: A prospective clinical study //Frontiers in Neurology. — 2018. — Vol. 9. — P. 24.

34. Chen B. et al. Gross total resection of glioma with the intraoperative fluorescence-guidance of fluorescein sodium //International Journal of Medical Sciences. — 2012. — Vol. 9. — №. 8. — P. 708.

35. Kessel D. Apoptosis, paraptosis and autophagy: death and survival pathways associated with photodynamic therapy //Photochemistry and photobiology. — 2019. — Vol. 95. — №. 1. — P. 119–125.

36. Cengel K.A., Simone C.B., Busch T.M. Vascular effects of photodynamic therapy for tumors //Handbook of photodynamic therapy: Updates on Recent Applications of Porphyrin-Based Compounds. — 2016. — P. 335–364.

37. Chen B. et al. Vascular and cellular targeting for photodynamic therapy //Critical Reviews™ in Eukaryotic Gene Expression. — 2006. — Vol. 16. — №. 4.

38. Meyers J.D. et al. Peptide‐targeted gold nanoparticles for photodynamic therapy of brain cancer //Particle & Particle Systems Characterization. — 2015. — Vol. 32. — №. 4. — P. 448–457.

39. Yi W. et al. Photodynamic therapy mediated by 5-aminolevulinic acid suppresses gliomas growth by decreasing the microvessels //Journal of Huazhong University of Science and Technology [Medical Sciences]. — 2015. — Vol. 35. — №. 2. — P. 259–264.

40. Gollnick S.O. Photodynamic therapy and antitumor immunity //Journal of the National Comprehensive Cancer Network. — 2012. — Vol. 10. — №. Suppl_2. — P. S-40-S-43.

41. Bellnier D.A. et al. Clinical pharmacokinetics of the PDT photosensitizers porfimer sodium (Photofrin), 2‐ [1‐hexyloxyethyl] ‐2‐devinyl pyropheophorbide‐a (Photochlor) and 5‐ALA‐induced protoporphyrin IX //Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. — 2006. — Vol. 38. — №. 5. — P. 439–444.

42. Rynda A.Iu. Fotodiagnostika i fotodinamicheskaia terapiia gliom polusharii bolshogo mozga [Photodiagnosis and photodynamic therapy of gliomas of the cerebral hemispheres]: abstract of the thesis for the degree of PhD Candidate in Medicine: 01/14/18/ Rynda A.Iu. — St. Petersburg, 2019. — 225 p. (In Russ.)

43. Gerweck L.E. The pH difference between tumor and normal tissue offers a tumor specific target for the treatment of cancer //Drug Resistance Updates. — 2000. — Vol. 1. — №. 3. — P. 49–50.

44. Moan J. et al. Tumour selectivity of photodynamic therapy //Targeted Cancer Therapies. An Odyssey. — 2003. — P. 208–211.

45. Ormond A.B., Freeman H.S. Dye sensitizers for photodynamic therapy //Materials. — 2013. — Vol. 6. — №. 3. — P. 817–840.

46. Zhang J. et al. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy //Acta pharmaceutica sinica B. — 2018. — Vol. 8. — №. 2. — P. 137–146.

47. Johansson A. et al. Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis //Lasers in surgery and medicine. — 2013. — Vol. 45. — №. 4. — P. 225–234.

48. Gaspar L.E. et al. Supratentorial malignant glioma: patterns of recurrence and implications for external beam local treatment //International Journal of Radiation Oncology* Biology* Physics. — 1992. — Vol. 24. — №. 1. — P. 55–57.

49. Korbelik M. et al. Distribution of Photofrin between tumour cells and tumour associated macrophages //British journal of cancer. — 1991. — Vol. 64. — №. 3. — P. 508–512.

50. Ahn P.H. et al. Lesion oxygenation associates with clinical outcomes in premalignant and early stage head and neck tumors treated on a phase 1 trial of photodynamic therapy //Photodiagnosis and photodynamic therapy. — 2018. — Vol. 21. — P. 28–35.

51. Hadjipanayis C.G., Widhalm G., Stummer W. What is the surgical benefit of utilizing 5-ALA for fluorescence-guided surgery of malignant gliomas? //Neurosurgery. — 2015. — Vol. 77. — №. 5. — P. 663.

52. Nanashima A., Nagayasu T. Current status of photodynamic therapy in digestive tract carcinoma in Japan //International journal of molecular sciences. — 2015. — Vol. 16. — №. 2. — P. 3434–3440.

53. Romanko Y.S. et al. Relationship between antitumor efficiency of photodynamic therapy with photoditasine and photoenergy density //Bulletin of Experimental Biology and Medicine. — 2005. — Vol. 139. — P. 460–464.

54. Cramer S.W., Chen C.C. Photodynamic therapy for the treatment of glioblastoma //Frontiers in surgery. — 2020. — Vol. 6. — P. 81.

55. Muragaki Y. et al. Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors //Journal of neurosurgery. — 2013. — Vol. 119. — №. 4. — P. 845–852.

56. Gelfond M.L. et al. Vozmozhnosti fotodinamicheskoi terapii (FDT) v onkologicheskoi praktike [Possibilities of photodynamic therapy (PDT) in oncological practice] // Rossiiskii bioterapevticheskii zhurnal [Russian Biotherapeutic Journal]. — 2003. — Vol. 2. — No. 4. — P. 67–71. (In Russ.)

57. Eljamel M.S., Goodman C., Moseley H. ALA and Photofrin® Fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single centre Phase III randomised controlled trial //Lasers in medical science. — 2008. — Vol. 23. — №. 4. — P. 361–367.

58. Eyüpoglu I.Y. et al. Intraoperative vascular DIVA surgery reveals angiogenic hotspots in tumor zones of malignant gliomas //Scientific reports. — 2015. — Vol. 5. — №. 1. — P. 7958.

59. Lamberti M.J. et al. Photodynamic modulation of type 1 interferon pathway on melanoma cells promotes dendritic cell activation //Frontiers in immunology. — 2019. — Vol. 10. — P. 2614.

60. Kaneko S. et al. Photodynamic therapy of malignant gliomas //Intracranial Gliomas Part III–Innovative Treatment Modalities. — 2018. — Vol. 32. — P. 1–13.

61. Ritz R. et al. Hypericin: a promising fluorescence marker for differentiating between glioblastoma and neurons in vitro //International journal of oncology. — 2005. — Vol. 27. — №. 6. — P. 1543–1549.

62. Noell S. et al. Selective enrichment of hypericin in malignant glioma: pioneering in vivo results //International journal of oncology. — 2011. — Vol. 38. — №. 5. — P. 1343–1348.

63. Ontario Health (Quality). 5-Aminolevulinic Acid Hydrochloride (5-ALA) — Guided Surgical Resection of High-Grade Gliomas: A Health Technology Assessment // Ont Health Technol Assess Ser. — 2020. — Vol. 20 — № 9. — P. 1–92.

64. Zhao S. et al. Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid — induced porphyrins: A systematic review and meta-analysis of prospective studies //PloS one. — 2013. — Vol. 8. — №. 5. — P. e63682.

65. Hadjipanayis C.G., Stummer W. 5-ALA and FDA approval for glioma surgery //Journal of neuro-oncology. — 2019. — Vol. 141. — P. 479–486.

66. Sun R., Cuthbert H., Watts C. Fluorescence-guided surgery in the surgical treatment of gliomas: Past, present and future //Cancers. — 2021. — Vol. 13. — №. 14. — P. 3508.

67. Valdes P.A. et al. 5-aminolevulinic acid induced protoporphyrin IX (ALA-PpIX) fluorescence guidance in meningioma surgery //Journal of Neuro-oncology. — 2019. — Vol. 141. — P. 555–565.

68. Ferraro N. et al. The role of 5-aminolevulinic acid in brain tumor surgery: a systematic review //Neurosurgical review. — 2016. — Vol. 39. — P. 545–555.

69. Yang J. et al. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology //Theranostics. — 2020. — Vol. 10. — №. 7. — P. 3223.

70. Ren Z. et al. A systematic review and meta-analysis of fluorescent-guided resection and therapy-based photodynamics on the survival of patients with glioma //Lasers in Medical Science. — 2021. — P. 1–9.

71. Plaetzer K. et al. Photophysics and photochemistry of photodynamic therapy: fundamental aspects //Lasers in medical science. — 2009. — Vol. 24. — P. 259–268.

72. Dupont C. et al. INtraoperative photoDYnamic Therapy for GliOblastomas (INDYGO): study protocol for a phase I clinical trial //Neurosurgery. — 2019. — Vol. 84. — №. 6. — P. E414-E419.

73. Kustov D.M. et al. Laser-induced fluorescent visualization and photodynamic therapy in surgical treatment of glial brain tumors //Biomedical Optics Express. — 2021. — Vol. 12. — №. 3. — P. 1761–1773.

74. Stylli S.S. et al. Photodynamic therapy of brain tumours: evaluation of porphyrin uptake versus clinical outcome //Journal of Clinical Neuroscience. — 2004. — Vol. 11. — №. 6. — P. 584–596.

75. Kostron H., Fiegele T., Akatuna E. Combination of FOSCAN® mediated fluorescence guided resection and photodynamic treatment as new therapeutic concept for malignant brain tumors //Medical Laser Application. — 2006. — Vol. 21. — №. 4. — P. 285–290.

76. Akimoto J., Haraoka J., Aizawa K. Preliminary clinical report on safety and efficacy of photodynamic therapy using talaporfin sodium for malignant gliomas //Photodiagnosis and photodynamic therapy. — 2012. — Vol. 9. — №. 2. — P. 91–99.

77. Muller P.J., Wilson B.C. Photodynamic therapy of brain tumors — a work in progress //Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. — 2006. — Vol. 38. — №. 5. — P. 384–389.

78. Stummer W. et al. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report //Journal of neuro-oncology. — 2008. — Vol. 87. — P. 103–109.

79. Beck T.J. et al. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5‐aminolevulinic acid induced protoporphyrin IX //Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. — 2007. — Vol. 39. — №. 5. — P. 386–393.

80. Eljamel S. Photodynamic applications in brain tumors: a comprehensive review of the literature //Photodiagnosis and photodynamic therapy. — 2010. — Vol. 7. — №. 2. — P. 76–85.

81. Kennedy J.C., Pottier R.H., Pross D.C. Photodynamic therapy with endogenous protoporphyrin: IX: basic principles and present clinical experience //Journal of Photochemistry and Photobiology B: Biology. — 1990. — Vol. 6. — №. 1–2. — P. 143–148.

82. Muller P., Wilson B. A randomized two arm clinical trial of photofrin pdt and standard therapy in high grade gliomas. phase iii trial //Proceedings of the 6th International PDT Symposium 2006. — 2006.

83. Kozlikina E.I. et al. The Combined Use of 5-ALA and Chlorin E6 Photosensitizers for Fluorescence-Guided Resection and Photodynamic Therapy under Neurophysiological Control for Recurrent Glioblastoma in the Functional Motor Area after Ineffective Use of 5-ALA: Preliminary Results //Bioengineering. — 2022. — Vol. 9. — №. 3. — P. 104.

84. Lisyany N.I. The modern technologies of conservative treatment of gliomas //Cerebral gliomas. Under red YA Zozulya. Kyiv: Ltd.»Express-Polygraph. — 2007. — P. 383–569.

85. Zavadskaya Т.S. Photodynamic therapy in the treatment of glioma //Experimental oncology. — 2015. — №. 37, № 4. — P. 234–241.

Лечение злокачественных глиом головного мозга представляет собой одну из наиболее сложных задач в нейроонкологии. Наиболее эффективным является комбинированный подход к лечению злокачественных глиальных опухолей (ГО), включающий хирургическое удаление опухоли, лучевую терапию, химиотерапию, а также ряд новых методов лечения: иммунотерапию, антиангиогенную и фотодинамическую терапии (ФДТ) [1].

Хирургическое вмешательство остается первым и наиболее важным этапом лечения ГО, целью которого является максимально возможная резекция опухоли при минимально возможном повреждении функционально-значимых зон головного мозга во избежание развития тяжелого неврологического дефицита [2,3] it is unclear what proportion of contrast-enhancing tumor must be resected for a survival advantage and how much survival improves beyond this threshold. The authors attempt to define these values for the patient with newly diagnosed GBM in the modern neurosurgical era.\nMETHODS: The authors identified 500 consecutive newly diagnosed patients with supratentorial GBM treated at the University of California, San Francisco between 1997 and 2009. Clinical, radiographic, and outcome parameters were measured for each case, including MR imaging-based volumetric tumor analysis.\nRESULTS: The patients had a median age of 60 years and presented with a median Karnofsky Performance Scale (KPS. По данным исследований Stummer и др. достоверно выявлено, что пациенты с более высокой степенью хирургической резекции (СХР) имели более высокую медиану общей выживаемости (ОВ) в сравнении с пациентами с остаточным объемом опухоли после операции (17,9 мес. против 12,9 мес.) [4] progression-free survival, overall survival, and morbidity. METHODS: 322 patients aged 23–73 years with suspected malignant glioma amenable to complete resection of contrast-enhancing tumour were randomly assigned to 20 mg/kg bodyweight 5-aminolevulinic acid for fluorescence-guided resection (n=161. Соответственно тотальность резекции опухоли является важным прогностическим фактором.

Для Цитирования:
Шахманаева Айна Умар-Халипаевна, Козликина Елизавета Игоревна, Трифонов Игорь Сергеевич, Левченко Олег Валерьевич, Фотодинамическая терапия злокачественных опухолей головного мозга (литературный обзор). Вестник неврологии, психиатрии и нейрохирургии. 2023;11.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: