По всем вопросам звоните:

+7 495 274-22-22

УДК: 614.4 DOI:10.33920/med-08-2009-01

Antiherpetic activity of sulfated polysaccharides of red algae of the Sea of Japan

A. B. Pott , junior researcher of the Laboratory of Experimental Virology, Scientifi c Research Institute of Epidemiology and Microbiology named after G.P. Somov, 690087, 1 Selskaya str., Vladivostok, Primorsky Krai, e-mail: pott_a.b@mail.ru
N. V. Krylova PhD in Biology, leading researcher of the Laboratory of Experimental Virology, Scientifi c Research Institute of Epidemiology and Microbiology named after G.P. Somov, 690087, 1 Selskaya str., Vladivostok, Primorsky Krai, e-mail: krylovanatalya@gmail.com
A. O. Kravchenko PhD Candidate in Chemistry, researcher of the Laboratory of Molecular Foundations of Antibacterial Immunity, G.B. Elyakov Pacifi c Institute of Bioorganic Chemistry FEB RAS, 159 100-let Vladivostoku ave., Vladivostok, Primorsky Krai, e-mail:kravchenko_25.89@mail.ru
I. M. Yermak PhD in Chemistry, chief researcher of the Laboratory of Molecular Foundations of Antibacterial Immunity, G.B. Elyakov Pacifi c Institute of Bioorganic Chemistry FEB RAS, 159 100-let Vladivostoku ave., Vladivostok, Primorsky Krai, e-mail: yermak@mail.ru
V. F. Lavrov PhD in Medicine, professor, head of the Laboratory for the Diagnosis of Viral Infections, I.I. Mechnikov Scientifi c Research Institute of Vaccines and Serums, 105064, Moscow, Russia, e-mail: v.f.lavrov@inbox.ru

Searching and developing new, more effective medicines and preventive drugs become an urgent objective due to herpes-viral infections, the incidence of which has increased significantly in recent years around the world. Sulfated polysaccharides, carrageenans, derived from natural sources (red algae of the Sea of Japan), which turned out to have a broad range of biological activity, attract special attention of researchers. This study was intended to investigate the anti-herpetic activity of three types of carrageenans (K1, K2 and K3), with different polymer chain structure, the number and location of sulfate groups. The study of the cytotoxic activity of these compounds and their impact on Type 1 herpes simplex virus (HSV-1) reproduction in a Vero cell passaged culture was evaluated using MMT-assay. All three carrageenans were found to have a marked antiviral activity in vitro, but their effect is different because each of them affects different stages of the viral life cycle. When treating Vero cells with carrageenans before they were infected with the virus, the K2 polysaccharide showed the most significant anti-herpetic activity; when directly treating the virus with carrageenans, the K1 polysaccharide showed the most significant anti-herpetic effect. The revealed differences in the effect of carrageenans on different HSV-1 replication stages seem to be related to the structure of the tested compounds.

Литература:

1. Heldwein E. E., Krummenacher C. Entry of herpesviruses into mammalian cells. Cell Mol. Life Sci. 2008; 65: 1653–1668.

2. Connolly S.A., Jackson J.O., Jardetzky T. S., Longnecker R. Fusing structure and function: a structural view of the herpesvirus entry machinery. Nat.Rev. Microbiol. 2011. 9: 369–381.

3. Karasneh G.A., Shukla D. Herpes simplex virus infects most cell types in vitro: clues to its success. Virol. J. 2011; 8: 481–491.

4. World Health Organization. Herpes simplex virus. News bulletin: https://www.who.int/ru/news-room/factsheets/detail/herpes-simplex-virus.

5. Neverov V.A., Vasiliev V.V., Demidenko T.P. Gerpesvirusnye infektsii, vyzyvaemye neyro-tegmental’notropnymi virusami (HSV-1, 2). Lektsii. [Herpesvirus Infections Caused by Neuro-Tegmentalnotropic Viruses (HSV-1, 2). Lectures]. Russian Family Doctor. 2017; 21 (1): 29–38.

6. Kukhanova M.K., Korovina A.N., Kochetko S.N. Human Herpes Simplex Virus: Life Cycle and Development of Inhibitors. Biochemistry (Moscow). 2014; 79 (13): 1635–1652.

7. Craigie J. S. Cell wall // Biology of the Red Algae / eds K.M. Cole, R.G. Sheath. Cambridge: Univ. Press. 1990: 221–257.

8. Yermak I.M., Byankina (Barabanova) A. O., Sokolova E.V. Strukturnye osobennosti i biologicheskaya aktivnost’ karraginanov sul’fatirovannykh polisakharidov krasnykh vodorosley dal’nevostochnykh morey Rossii. [Structural Features and Biological Activity of Sulfated Polysaccharides Derived from Red Algae of the Far Eastern Seas of Russia]. Bulletin of RAS Far Eastern Department. 2014. 180.

9. Knutsen S.H., Myslaodski D. E., Larsen B., Usov A. I. A modified system of nomenclature for red algal galactans. Bot. Mar. 1994; 37: 163–169.

10. Yermak I. M, Khotimchenko Yu. S. Chemical properties, biological activities and applications of carrageenan from red algae. In Recent Advances in Marine Biotechnology (Fingerman M, Nagabhushanam R. eds). Sci. Publ. Inc. USA-UK. 2003; 9: 207–255.

11. Yuan H.,Song J., Zhang W., Li X., Li N., Gao X. Аntioxidant activity and cytoprotective effect of kappacarrageenan oligosaccharides and their different derivatives. Bioorg. Med. Chem. Lett. 2006; 16 (5): 1329– 1334.doi: 10.1016/j.bmcl.2005.11.057.

12. Sun Y., Yang B., Wu Y., Liu Y., Gu X., Zhang H., Wang C., Cao H., Huang L., Wang Z. Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food. Chem. 2015; 178: 311–318. doi: 10.1016/j.foodchem.2015.01.105.

13. Fedorov S.N., Ermakova S.P., Zvyagintseva T.N., Stonik V.A. Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar. Drugs. 2013; 11 (12): 4876–4901 doi: 10.3390/ md11124876.

14. Cicinskas E., Begun M.A., Tiasto V.A., BelousovA.S.,Vikhareva V.,Mikhailova V.A.,Kalitnik A.A. In vitro antitumor and immunotropic activity of carrageenans from red algae Chondrus armatus and their low‐ molecular weight degradation products. Journal of Biomedical Materials Research. 2019; 108 (2) https:// doi.org/10.1002/jbm.a.36812.

15. Yermak I.R., Davydova V.N., Aminin D. L., Barabanova A.O., Sokolova E.V., Bogdanovich P.N., Polyakov A.M., Solov’eva T. F. Immunomoduliruyushchaya aktivnost’ karraginanov iz krasnykh vodorosley dal’nevostochnykh morey. [Immune-modulating Activity of Carrageenans Derived from Red Algae of the Far Eastern Seas]. Pacific Medical Journal. 2009; 3: 40–45.

16. Gonzаlez, M. E. Polysaccharides as antiviral agents: antiviral activity of carrageenan / M.E. Gonzаlez, B. Alarcоn, L. Carrasco. Antimicrob. Agents Chemother. 1987; 31 (9): 1388–1393. doi: 10.1128/aac.31.9.1388.

17. Montanha J.A., Bourgougnon N., Boustie J. Antiviral Activity of Carrageenans from Marine Red Algae. Lat.Am. J. Pharm. 2009; 28: 443–448.

18. Chiu Y-H.,Chan Y-L., Tsai L-W., Li T-L., Wu C-J. Prevention of human enterovirus 71 infection by kappa carrageenan. Antiviral. Res. 2012; 95 (2): 128–134. doi: 10.1016/j.antiviral.2012.05.009.

19. Leibbrandt A., Meier C., Kоnig-Schuster M., Weinmüllner R., Kalthoff D., Pflugfelder D., Graf P., FrankGehrke B., Beer M., Fazekas T., Unger H., Prieschl-Grassauer E., Grassauer A. Iota-carrageenan is a potent inhibitor of influenza A virus infection. PLoS One. 2010; 5 (12): e14320. https://doi.org/10.1371/journal. pone.0014320.

20. Talarico L.B., Noseda M.D., Ducatti D.R. B., Duarte M. E. R., Damonte E.B. Differential inhibition of dengue virus infection in mammalian and mosquito cells by iota-carrageenan. J.Gen. Virol. 2011; 92 (6): 1332–1342. https://doi.org/10.1099/vir.0.028522–0.

21. Buck C.B., Thompson C.D., Roberts J.N., Müller M., Lowy D.R., Schiller J.T. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog. 2006; 2 (7): e69.doi: 10.1371/journal.ppat.0020069.

22. Ji J., Wang L., Wu H., Luan H-M. Bio-function summary of marine oligosaccharides. Int.J. Biol. 2011; 3 (1): 74–86. doi:10.5539/ijb.v3n1p74.

23. Yermak I.M., Kim Y.H., Titlyanov E.A., Isakov V.V., Solov’eva T. F. Chemical structure and gel properties of carrageenan from algae belonging to the Gigartinaceae and Tichocapaceae, collected from the Russian Pacific coast. J Appl Phycol. 1999; 11: 41–48.

24. Barabanova A.O., Shashkov A. S., Glazunov V.P., Isakov V.V.,Nebylovskaya T.B., Helbert W., Solov’eva T. F., Yermak I.M. Structure and properties of carrageenan-like polysaccharide from the red alga Tichocarpus crinitus (Gmel.) Rupr. (Rhodophyta, Tichocarpaceae). J Appl Phycol. 2008; 20: 1013–1020.

25. Rochas С., Rinaudo М., Landry S. Role of the molecular weight on the mechanical properties of kappacarrageenan gels. Carbohydr. Polym. 1990; 12: 255–266. https://doi.org/10.1016/0144–8617 (90) 90067–3.

26. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983; 65 (1–2): 55–63. doi: 10.1016/0022–1759 (83) 90303–4.

27. Ngan L.T. M., Jang M.J., Kwon M.J., Ahn Y.J. Antiviral activity and possible mechanism of action of constituents identified in Paeonia lactiflora root toward human rhinoviruses. PLoS ONE. 2015; 10 (4): e0121629. doi: 10.1371/journal.pone.0121629.

28. Su C., Zhan G., Zheng C. Evasion of host antiviral innate immunity by HSV-1, an update. Virology Journal. 2016; 13: 38. doi: 10.1186/s12985-016-0495-5.

29. Besednova N.N., Makarenkova I.D., Zvyagintseva T.N., Imbs T. I., Somova L.M., Zaporozhets T. S. Antiviral action and pathogenetic targets for seaweed sulfated polysaccharides in herpesvirus infections. Biomed Khim. 2016; 62 (3): 217–27 doi: 10.18097/PBMC20166203217.

30. Ghosh T., Chattopadhyay K., Marschall M. Focus on antivirally active sulfated polysaccharides: From structure-activity analysis to clinical evaluation. Glycobiology. 2009; 19 (1): 2–15. doi: 10.1093/glycob/ cwn092.

31. Talarico L.B., Zibetti R.G., Faria P.C. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogon-grusgriffithsiae and Crytonmia crenulata. Int.J. Biol. Macromol. 2005; 34: 63–71. doi: 10.1016/j.ijbiomac.2004.03.002.

32. Maksema I.G., Kompanets G.G., Barabanova A.O., Yermak I.M., Slonova R.A. Protivovirusnoe deystvie karraginanov iz krasnoy vodorosli pri eksperimental’noy khantavirusnoy infektsii. [Antiviral Effect of Red Algae Carrageenans in Experimental Hantavirus Infection]. Pacific Medical Journal. 2011; 1: 32–34.

33. Sokolova E.V., Chusovitin E.A., Barabanova A.O., Balagan S.A., Galkin N.G., Yermak I.M., Atomic force microscopy imaging of carrageenans from red algae of Gigartinaceae and Tichocarpaceae families. Carbohydr. Polym. 2013; 93: 458–465.

34. Yermak I.M., Davydova V.N., Kravchenko A.O., Chistyulin D.A., Pimenova E.A., Glazunov V.P. Mucoadhesive properties of sulphated polysaccharides carrageenans from red seaweed families Gigartinaceae and Tichocarpaceae. Int.J. Biol. Macromol. 2020; 142: 634–642.

35. Carlucci M.J., Pujol C.A., Ciancia M., Noseda. M. D., Matulewicz M.C., Damonte E.B., Cerezo A. S. Antiherpetic and anticoagulant properties of carrageenans from the red seaweed Gigartina skottsbergii and their cyclized derivatives: correlation between structure and biological activity. Int.J. Biol. Macromol. 1997; 20: 97–105 doi: 10.1016/s0141–8130 (96) 01145–2.

The growing diversity of increasing viral diseases in human infectious pathology, which have been observed in recent decades and was associated with a limited range of effective antiviral drugs, is one of the most pressing health problems worldwide.

Type 1 herpes simplex virus (HSV-1) is a neurotropic virus that can persist in human sensory neurons for the lifetime, replicate in epithelial cells during the primary infection and after the endogenous reactivation, and cause diseases with various clinical manifestations, from labial herpes to meningitis and encephalitis [1–3]. 60 % to 95 % world population is infected with one or even several herpes viruses, according to WHO [4].

Treatment of herpetic patients is customized, depends on the clinical form of infection, the disease severity, the recurrence rate, and includes etiotropic pathogenetic and symptomatic agents [5]. Most modern medications used to treat herpes virus infections are based on modified nucleosides. Their action is usually aimed at suppressing the activity of the main virus replication enzyme, DNA polymerase. Acyclovir is the golden standard for herpes infection treatment, and such medicines as Valacyclovir and Famcyclovir are also often used. For example, Valacyclovir, a modified form of Acyclovir, is less toxic and better tolerated by patients [5]. These drugs help alleviate the disease severity and limit the frequency of the disease symptoms in most cases but cannot cure the infection [4, 6]. In this regard, the search for efficient natural compounds that suppress the virus adsorption and reproduction selectively while not causing harm to the patient’s body and combining antiviral, anti-inflammatory and immunemodulating properties, the deriving of new agents for the virus infection prevention and treatment from them is among the priorities of modern virology.

Marine aquatic organisms are of considerable potential for development of such drugs. Sulfated polysaccharides derived from seaweed, in particular, carrageenans, the sulfated galactans of red algae, have been in the focus of researchers’ attention in recent years. Carrageenans are a family of sulfated hydrocolloids, the polymer chains of which consist of galactose (G) residues and its derivatives with alternating α-1→3 — and β-1→4-bonds [7, 8]. Carrageenans are classified by the location and number of sulfate groups (S) in monosaccharide residues and the presence of 3,6-anhydrogalactose (DA) in 4-O-substituted residues. Three types of carrageenans widely used in industry, designated as Kappa- (k, DA-G4S), iota- (I, DA2S-G4S), the so-called gelling types, and lambda- (λ, D2S6S-G2S, non-gelling type), contain one, two or three sulfate groups per repeated disaccharide link, respectively [8, 9]. However, natural polysaccharides most often have a complex hybrid structure; their structural features depend on many factors: species, algae habitat, etc. [10]. The scientific literature describes in some detail the antioxidant, anti-tumour, and immunemodulating activity of carrageenans [11–15].

Для Цитирования:
A. B. Pott, N. V. Krylova, A. O. Kravchenko, I. M. Yermak, V. F. Lavrov, Antiherpetic activity of sulfated polysaccharides of red algae of the Sea of Japan. Санитарный врач. 2020;9.
Полная версия статьи доступна подписчикам журнала
Язык статьи:
Действия с выбранными: